容斥原理。
青蛙跳石头,给出青蛙跳的步数,青蛙所能跳的石头就是第i只青蛙与总步数的最大公因数的倍数,即gcd(a[i], m) * k, k = 0, 1, 2...
这样就会产生重复跳过的石头,用容斥原理来解决。
一开始先用vis[i]来标记所有走过的m的因子,num[i]记录前面的重复数。即最后每一个因子对应的经过个数num[i] - vis[i];
看了好久才懂得。。感觉离散白学了。。。
代码:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int a[20005];
long long vis[20005];
long long num[20005];
int x;
int n, m;
int nn;
int gcd(int x, int y)
{
return y == 0 ? x : gcd(y, x % y);
}
int main()
{
int T;
scanf("%d", &T);
int kase = 0;
while(T--)
{
memset(vis, 0, sizeof(vis));
memset(num, 0, sizeof(num));
scanf("%d%d", &n, &m);
nn = 0;
for(int i = 1; i <= (int)(sqrt(m) + 1); ++i)
{
if(m % i == 0)
{
a[nn++] = i;
a[nn++] = m / i;
}
}
sort(a, a + nn);
nn = unique(a, a + nn) - a;
for(int i = 0; i < n; ++i)
{
int x;
scanf("%d", &x);
int g = gcd(x, m);
for(int j = 0; j < nn; ++j)
if(a[j] % g == 0)
{
vis[j] = 1;
}
}
long long ans = 0;
// vis[nn - 1] = 0;
for(int i = 0; i < nn; ++i)
{
if(vis[i] != 0 || num[i] != 0)
{
long long tmp = m / a[i];
ans += (tmp - 1) * tmp / 2 * a[i] * (vis[i] - num[i]);
tmp = vis[i] - num[i];
for(int j = i + 1; j < nn; ++j)
if(a[j] % a[i] == 0)
num[j] += tmp;
}
}
printf("Case #%d: %I64d\n", ++kase, ans);
}
}