HDU 5514

容斥原理。

青蛙跳石头,给出青蛙跳的步数,青蛙所能跳的石头就是第i只青蛙与总步数的最大公因数的倍数,即gcd(a[i], m) * k, k = 0, 1, 2...

这样就会产生重复跳过的石头,用容斥原理来解决。

一开始先用vis[i]来标记所有走过的m的因子,num[i]记录前面的重复数。即最后每一个因子对应的经过个数num[i] - vis[i];

看了好久才懂得。。感觉离散白学了。。。

代码:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int a[20005];
long long vis[20005];
long long num[20005];
int x;
int n, m;
int nn;
int gcd(int x, int y)
{
    return y == 0 ? x : gcd(y, x % y);
}
int main()
{
    int T;
    scanf("%d", &T);
    int kase = 0;
    while(T--)
    {
        memset(vis, 0, sizeof(vis));
        memset(num, 0, sizeof(num));
        scanf("%d%d", &n, &m);
        nn = 0;
        for(int i = 1; i <= (int)(sqrt(m) + 1); ++i)
        {
            if(m % i == 0)
            {
                a[nn++] = i;
                a[nn++] = m / i;
            }
        }
        sort(a, a + nn);
        nn = unique(a, a + nn) - a;
        for(int i = 0; i < n; ++i)
        {
            int x;
            scanf("%d", &x);
            int g = gcd(x, m);
            for(int j = 0; j < nn; ++j)
            if(a[j] % g == 0)
            {
                vis[j] = 1;
            }
        }
        long long ans = 0;
//        vis[nn - 1] = 0;
        for(int i = 0; i < nn; ++i)
        {
            if(vis[i] != 0 || num[i] != 0)
            {
                long long tmp = m / a[i];
                ans += (tmp - 1) * tmp / 2 * a[i] * (vis[i] - num[i]);
                tmp = vis[i] - num[i];
                for(int j = i + 1; j < nn; ++j)
                    if(a[j] % a[i] == 0)
                        num[j] += tmp;
            }
        }
        printf("Case #%d: %I64d\n", ++kase, ans);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值