函数拟合2

分段线性插值函数

  • 数据误差为0
  • 函数性质不够好,只有C0连续,不光滑
    分段线性插值函数
    光滑插值函数
  • 数据误差为0
  • 可能被“差数据”(噪声)带歪,导致函数性质不好、预测不可靠
    光滑插值函数
    逼近拟合函数
  • 数据误差不为0,但足够小
    三种对比
    求拟合函数没有唯一的方法,取决于具体的应用。

首先确定函数的表达空间(函数集、空间),确定基函数的组合系数(求解变量)

然后优化模型(最小化问题)

  • 能量项 = 误差项 (距离)+ 正则项(限制)

最后求解误差函数的驻点(导数为0之处),转化为系数的方程组

如果是欠定的(有无穷多解),则修正模型
	改进/增加各种正则项,Lasso、岭回归、稀疏正则项
	返回修改模型

对于给定问题,插值多项式存在唯一,但是可以用不同的方法给出插值多项式的不同表示形式。比如拉格朗日插值和牛顿插值。

多项式插值存在的问题:

  • 系统矩阵稠密
  • 依赖于基函数选取,矩阵可能病态,导致难于求解
  • 多项式插值不稳定,控制点的微小变化可能导致完全不同的结果
  • 振荡现象,多项式随着插值点数增加而摆动

更好的基函数

  • 伯恩斯坦基函数

好的基函数一般需要系数交替

多项式的好处

  • 易于计算,表现良好,光滑
  • 稠密性和完备性:表达能力足够!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值