分段线性插值函数
- 数据误差为0
- 函数性质不够好,只有C0连续,不光滑
光滑插值函数 - 数据误差为0
- 可能被“差数据”(噪声)带歪,导致函数性质不好、预测不可靠
逼近拟合函数 - 数据误差不为0,但足够小
求拟合函数没有唯一的方法,取决于具体的应用。
首先确定函数的表达空间(函数集、空间),确定基函数的组合系数(求解变量)
然后优化模型(最小化问题)
- 能量项 = 误差项 (距离)+ 正则项(限制)
最后求解误差函数的驻点(导数为0之处),转化为系数的方程组
如果是欠定的(有无穷多解),则修正模型
改进/增加各种正则项,Lasso、岭回归、稀疏正则项
返回修改模型
对于给定问题,插值多项式存在唯一,但是可以用不同的方法给出插值多项式的不同表示形式。比如拉格朗日插值和牛顿插值。
多项式插值存在的问题:
- 系统矩阵稠密
- 依赖于基函数选取,矩阵可能病态,导致难于求解
- 多项式插值不稳定,控制点的微小变化可能导致完全不同的结果
- 振荡现象,多项式随着插值点数增加而摆动
更好的基函数
- 伯恩斯坦基函数
好的基函数一般需要系数交替
多项式的好处
- 易于计算,表现良好,光滑
- 稠密性和完备性:表达能力足够!