给定一个长度为 n 的整数数组 A 。
假设 Bk 是数组 A 顺时针旋转 k 个位置后的数组,我们定义 A 的“旋转函数” F 为:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]。
计算F(0), F(1), ..., F(n-1)中的最大值。
解题思路:
对于一个长度为n的数组,F函数最多可计算到F(n-1),且计算每个F函数需要n个数相加。最简单的解题方法是将n个F函数依次计算比较得到答案,这样的时间复杂度为O(n^2)。为了优化,可以观察F(k)与F(k-1)之间的规律。
以示例中的F(0)与F(1)为例,能发现要从F(0)变成F(1),只需要将除了6以外的数字的系数全部增加1,再把6的系数从3变为0就行,同时也可以理解为:将F(0)加上A中所有的元素,之后再减去4倍的6就行了。
设sum(A)为数组A的和,则示例1中的几个函数可以这样表示:
F(1)=F(0)+sum(A)-4*6
F(2)=F(1)+sum(A)-4*2
F(3)=F(2)+sum(A)-4*3
F(4)=F(3)+sum(A)-4*3
推广到F(k),则可以得到:
F(k)=F(k-1)+sum(A)-系数*某个数
很显然可以发现,示例中的系数其实就是n,而某个数就是A[A.length-k]。通过这样的迭代公式,只需在算出F(0)后,就可以依次计算出F(n),时间复杂度为O(n)。
代码如下:
public int maxRotateFunction(int[] nums) {
int res=0;
int sum=0;//记录nums的总和
//先计算F(0)
for (int i = 0; i <nums.length ; i++) {
res+=nums[i]*i;
sum+=nums[i];
}
int tempRes=res;
//F[k]=F[k-1]+sum-nums.length*nums[nums.length-k]
for (int i = 1; i <nums.length ; i++) {//从F[1]开始计算
tempRes=tempRes+sum-nums.length*nums[nums.length-i];
res=Math.max(res,tempRes);
}
return res;
}