毕设分享 基于深度学习的人脸表情识别(源码+论文)

0 前言

🔥这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 毕业设计 基于深度学习的新闻文本分类算法系统(源码+论文)

🥇学长这里给一个题目综合评分(每项满分5分)

难度系数:3分
工作量:3分
创新点:4分

🧿 项目分享:见文末!

1 项目运行效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

视频效果:

毕业设计 深度学习表情识别

2 技术介绍

2.1 技术概括

面部表情识别技术源于1971年心理学家Ekman和Friesen的一项研究,他们提出人类主要有六种基本情感,每种情感以唯一的表情来反映当时的心理活动,这六种情感分别是愤怒(anger)、高兴(happiness)、悲伤 (sadness)、惊讶(surprise)、厌恶(disgust)和恐惧(fear)。

尽管人类的情感维度和表情复杂度远不是数字6可以量化的,但总体而言,这6种也差不多够描述了。

在这里插入图片描述

2.2 目前表情识别实现技术

在这里插入图片描述
在这里插入图片描述

3 深度学习表情识别实现过程

3.1 网络架构

在这里插入图片描述
面部表情识别CNN架构(改编自 埃因霍芬理工大学PARsE结构图)

其中,通过卷积操作来创建特征映射,将卷积核挨个与图像进行卷积,从而创建一组要素图,并在其后通过池化(pooling)操作来降维。

在这里插入图片描述

3.2 数据

主要来源于kaggle比赛,下载地址。
有七种表情类别: (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).
数据是48x48 灰度图,格式比较奇葩。
第一列是情绪分类,第二列是图像的numpy,第三列是train or test。

在这里插入图片描述

3.3 实现流程

在这里插入图片描述

3.4 部分实现代码

import cv2
import sys
import json
import numpy as np
from keras.models import model_from_json


emotions = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral']
cascPath = sys.argv[1]

faceCascade = cv2.CascadeClassifier(cascPath)
noseCascade = cv2.CascadeClassifier(cascPath)


# load json and create model arch
json_file = open('model.json','r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)

# load weights into new model
model.load_weights('model.h5')

# overlay meme face
def overlay_memeface(probs):
    if max(probs) > 0.8:
        emotion = emotions[np.argmax(probs)]
        return 'meme_faces/{}-{}.png'.format(emotion, emotion)
    else:
        index1, index2 = np.argsort(probs)[::-1][:2]
        emotion1 = emotions[index1]
        emotion2 = emotions[index2]
        return 'meme_faces/{}-{}.png'.format(emotion1, emotion2)

def predict_emotion(face_image_gray): # a single cropped face
    resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)
    # cv2.imwrite(str(index)+'.png', resized_img)
    image = resized_img.reshape(1, 1, 48, 48)
    list_of_list = model.predict(image, batch_size=1, verbose=1)
    angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]
    return [angry, fear, happy, sad, surprise, neutral]

video_capture = cv2.VideoCapture(0)
while True:
    # Capture frame-by-frame
    ret, frame = video_capture.read()

    img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY,1)


    faces = faceCascade.detectMultiScale(
        img_gray,
        scaleFactor=1.1,
        minNeighbors=5,
        minSize=(30, 30),
        flags=cv2.cv.CV_HAAR_SCALE_IMAGE
    )

    # Draw a rectangle around the faces
    for (x, y, w, h) in faces:

        face_image_gray = img_gray[y:y+h, x:x+w]
        filename = overlay_memeface(predict_emotion(face_image_gray))

        print filename
        meme = cv2.imread(filename,-1)
        # meme = (meme/256).astype('uint8')
        try:
            meme.shape[2]
        except:
            meme = meme.reshape(meme.shape[0], meme.shape[1], 1)
        # print meme.dtype
        # print meme.shape
        orig_mask = meme[:,:,3]
        # print orig_mask.shape
        # memegray = cv2.cvtColor(orig_mask, cv2.COLOR_BGR2GRAY)
        ret1, orig_mask = cv2.threshold(orig_mask, 10, 255, cv2.THRESH_BINARY)
        orig_mask_inv = cv2.bitwise_not(orig_mask)
        meme = meme[:,:,0:3]
        origMustacheHeight, origMustacheWidth = meme.shape[:2]

        roi_gray = img_gray[y:y+h, x:x+w]
        roi_color = frame[y:y+h, x:x+w]

        # Detect a nose within the region bounded by each face (the ROI)
        nose = noseCascade.detectMultiScale(roi_gray)

        for (nx,ny,nw,nh) in nose:
            # Un-comment the next line for debug (draw box around the nose)
            #cv2.rectangle(roi_color,(nx,ny),(nx+nw,ny+nh),(255,0,0),2)

            # The mustache should be three times the width of the nose
            mustacheWidth =  20 * nw
            mustacheHeight = mustacheWidth * origMustacheHeight / origMustacheWidth

            # Center the mustache on the bottom of the nose
            x1 = nx - (mustacheWidth/4)
            x2 = nx + nw + (mustacheWidth/4)
            y1 = ny + nh - (mustacheHeight/2)
            y2 = ny + nh + (mustacheHeight/2)

            # Check for clipping
            if x1 < 0:
                x1 = 0
            if y1 < 0:
                y1 = 0
            if x2 > w:
                x2 = w
            if y2 > h:
                y2 = h


            # Re-calculate the width and height of the mustache image
            mustacheWidth = (x2 - x1)
            mustacheHeight = (y2 - y1)

            # Re-size the original image and the masks to the mustache sizes
            # calcualted above
            mustache = cv2.resize(meme, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)
            mask = cv2.resize(orig_mask, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)
            mask_inv = cv2.resize(orig_mask_inv, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)

            # take ROI for mustache from background equal to size of mustache image
            roi = roi_color[y1:y2, x1:x2]

            # roi_bg contains the original image only where the mustache is not
            # in the region that is the size of the mustache.
            roi_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)

            # roi_fg contains the image of the mustache only where the mustache is
            roi_fg = cv2.bitwise_and(mustache,mustache,mask = mask)

            # join the roi_bg and roi_fg
            dst = cv2.add(roi_bg,roi_fg)

            # place the joined image, saved to dst back over the original image
            roi_color[y1:y2, x1:x2] = dst

            break

    #     cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
    #     angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)
    #     text1 = 'Angry: {}     Fear: {}   Happy: {}'.format(angry, fear, happy)
    #     text2 = '  Sad: {} Surprise: {} Neutral: {}'.format(sad, surprise, neutral)
    #
    # cv2.putText(frame, text1, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)
    # cv2.putText(frame, text2, (50, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)

    # Display the resulting frame
    cv2.imshow('Video', frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()

篇幅有限,更多详细设计见设计论文

4 最后

项目包含内容

在这里插入图片描述

上万字 完整详细设计论文

在这里插入图片描述

🧿 项目分享:见文末!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值