什么是交叉熵啊?| 小白深度学习入门

640?wx_fmt=gif

大家在学习深度学习的过程中,都会碰到cross-entropy这个词,中文叫“交叉熵”,多么高大上的名词!

然而这个“熵”到底是干啥用的,实际上很多人包括我,在一开始都没好好琢磨过。

在面试算法工程师的过程中,经常会问道这样的问题:“什么是熵?”

信息熵?

热力学那个先不说,这里准确的说是“信息熵”。而要知道什么是信息熵,我们得知道什么是信息。

网上的“太阳从东边升起来”的例子大家应该都看过了。我们说,这是一句毫无信息量的话,因为他没有消除任何不确定性。

前女友对你说“我结婚了”,这句话包含了信息量,去除了不确定性。但如果前女友和你说“我是女的”,这句话就毫无信息量,这就是废话。

信息熵,泛泛的说是用来衡量一段信息的信息量大小的。

这个定义我之前也不理解,直到我看见一个说法,突然茅塞顿开:信息熵是用来衡量表达一个随机变量需要的最少的比特位数。

在信息论的世界里,我们追求的是用最经济实惠的方法表达信息(“好话不说二遍”嘛)。

对一个不确定的信息(随机变量)来说,怎么最经济实惠的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶锦鲤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值