第21课:SVM——线性 SVM,间隔由硬到软

从线性可分 SVM 到线性 SVM

从现实情况引出线性 SVM

前面连续三篇讲得都是线性可分 SVM,这种 SVM 学习的训练数据本身就是线性可分的——可以很清晰地在特征向量空间里分成正集和负集。

线性可分 SVM 正负样本之间的间隔叫做“硬间隔”,也就是说在这个“隔离带”里面,肯定不会出现任何训练样本。

我们不难想到,这种情况在现实生活中其实是很少见的。更多的时候,可能是像下面这个样子:

enter image description here

如果没有红圈里那两个点,本来可以很好的分割:

enter image description here

可是,偏偏多了那两个点!都找不到分隔超平面了!像下图这样,分来分去,怎么都分不开:

enter image description here

如果我们不那么“轴”,不是完全禁止两个辅助超平面之间有任何样本点。而是允许个别样本出现在“隔离带”里面,那样是不是会变得好分得多?比如像下面这样:

评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符 “速评一下”
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页
实付 69.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值