机器学习入门(十六):SVM——线性 SVM,间隔由硬到软

从线性可分 SVM 到线性 SVM

从现实情况引出线性 SVM

线性可分 SVM,这种 SVM 学习的训练数据本身就是线性可分的——可以很清晰地在特征向量空间里分成正集和负集。

线性可分 SVM 正负样本之间的间隔叫做“硬间隔”,也就是说在这个“隔离带”里面,肯定不会出现任何训练样本。

我们不难想到,这种情况在现实生活中其实是很少见的。更多的时候,可能是像下面这个样子:


v2-ebe684a8fc8da8215555003432fb78a2_b.jpg


如果没有红圈里那两个点,本来可以很好的分割:


v2-b0fdb846af71b0499726d11f64af39ad_b.jpg


可是,偏偏多了那两个点!都找不到分隔超平面了!像下图这样,分来分去,怎么都分不开:


v2-d968ae92201acc5eae2d061e5d6ccbdf_b.jpg


如果我们不那么“轴”,不是完全禁止两个辅助超平面之间有任何样本点。而是允许个别样本出现在“隔离带”里面,那样是不是会变得好分得多?比如像下面这样:


v2-4f3c039ee3283d0580307cdd476ec092_b.jpg


这样看起来也很合理啊。而且,一般情况下,怎么能保证样本就一定能够被分隔得清清楚楚呢?从直觉上我们也觉得,允许一部分样本存在于“隔离带”内更合理。

正是基于这种想法,相对于之前讲的线性可分 SVM 的硬间隔(Hard Margin),人们提出了软间隔(Soft Margin) 的概念。

相应的,对应于软间隔的 SVM,也就叫做线性 SVM

下面我们对照来看一看它们:

线性可分 SVM

线性可分 SVM 成立的前提是训练样本在向量空间中线性可分,即存在一个超平面能够将不同类的样本完全彻底且无一错漏地分开。

用数学式子表达,全部训练样本满足如下约束条件:

wxi+b⩾1,yi=1 wxi+b⩽1,yi=−1

这时,wxi+b=1 和 wxi+b=−1 这两个超平面之间的间隔叫做硬间隔。位于它们两个正中的 wxi+b=0 是最大分割超平面

线性 SVM

硬间隔到软间隔

由于样本线性可分的情况在现实当中出现很少,为了更有效地应对实际问题,我们不再要求所有不同类的样本全部线性可分,也就是不再要求硬间隔存在。

取而代之的是将不同类样本之间的硬间隔变成软间隔,即允许部分样本不满足约束条件: yi(wxi+b)⩾1。

当然,我们还是希望不满足硬间隔条件的样本尽量少,还能够是一个“软”间隔,而非间隔根本不存在。

为了度量这个间隔“软”到何种程度,我们针对每一个样本 (xi,yi),引入一个松弛变量 ξi,令 ξi⩾0,且 yi(wxi+b)⩾1−ξi。

对应到图形上是这样:


v2-9a73ff587a9ac2e304dfb339e02a588f_b.jpg

这样看起来,确实比硬间隔合理多了。

*优化目标*

于是,我们的优化目标就从原来的:

minw,b||w||22

s.t.1−yi(wxi+b)⩽0,i=1,2,...,m

变成了:

minw,b,ξ12||w||2+C∑mi=1ξi

s.t.yi(wxi+b)⩾1−ξi,i=1,2,...,m;ξi⩾0,i=1,2,...,m

其中 C 是一个大于0的常数,若 C 为无穷大,则 ξi 必然为无穷小,否则将无法最小化主问题。如此一来,线性 SVM 就又变成了线性可分 SVM。

当 C 为有限值的时候,才能允许部分样本不遵守约束条件 1–yi(wxi+b)⩽0。

这就是线性 SVM 的主问题

对偶法最优化线性 SVM 主问题

算法思路

上面我们得出了线性 SVM 的主问题。

现在来回顾一下上节课我们讲解的,用对偶法求解线性可分 SVM 的主问题的思路——当时一共分了7步,不过这7步再抽象一下,大致可以分为4个阶段。

*Stage-1*:根据主问题构建拉格朗日函数,由拉格朗日函数的对偶性,将主问题转化为极大极小化拉格朗日函数的对偶问题。

*Stage-2*:分步求解极大极小问题。

在每次求解极值的过程中都是先对对应的函数求梯度,再令梯度为0。以此来推导出主问题参数和拉格朗日乘子之间的关系。

再将用拉格朗日乘子表达的主问题参数带回到拉格朗日函数中,最终一步步将整个对偶问题推导为拉格朗日乘子和样本 (xi,yi) 之间的关系。

*Stage-3*:通过最小化拉格朗日乘子与样本量组成的函数(也就是 Stage-2 的结果),求出拉格朗日乘子的值。

这里,可以用 SMO 算法进行求解。

*Stage-4*:将 Stage-3 求出的拉格朗日乘子的值带回到 Stage-2 中确定的乘子与主问题参数关系的等式中,求解主问题参数。

再根据主问题参数构造最终的分隔超平面和决策函数。

主问题求解

现在我们就按这个思路来对线性 SVM 主问题进行求解。

首先,将主问题写成我们熟悉的约束条件小于等于0的形式,如下:

minw,b,ξ12||w||2+C∑mi=1ξi

s.t.1−ξi−yi(wxi+b)⩽0,i=1,2,...,m;−ξi⩽0,i=1,2,...,m

然后开始逐步求解:

*1. 构建拉格朗日函数如下:*

L(w,b,ξ,α,μ)=12||w||2+C∑mi=1ξi+∑mi=1αi[1−ξi−yi(wxi+b)]+∑mi=1(−μiξi)

αi⩾0,μi⩾0

其中 αi 和 μi 是拉格朗日乘子,而 w、b 和 ξi 是主问题参数

根据主问题的对偶性,主问题的对偶问题是:

maxα,μminw,b,ξL(w,b,ξ,α,μ)

*2. 极大极小化拉格朗日函数*

(1)极小化

首先 对 w、b 和 ξ 极小化 L(w,b,ξ,α,μ)——分别对 w、b和ξi 求偏导,然后令导数为0,得出如下关系:

w=∑mi=1αiyixi

0=∑mi=1αiyi

C=αi+μi

将这些关系带入线性 SVM 主问题的拉格朗日函数,得到:

minw,b,ξL(w,b,ξ,α,μ)=∑mi=1αi−12∑mi=1∑mj=1αiαjyiyj(xi⋅xj)

(2)极大化

然后,就要对 α 和 μ 进行极大化。

因为上面极小化的结果中只有 α 而没有 μ,所以现在只需要极大化 α 就好:

maxα,μminw,b,ξL(w,b,ξ,α,μ)=maxα(∑mi=1αi−12∑mi=1∑mj=1αiαjyiyj(xi⋅xj))

s.t.∑mi=1αiyi=0;C−αi−μi=0;αi⩾0;μi⩾0;i=1,2,...,m

*3. SMO 算法求解对偶问题*

我们将上面极大化目标约束条件中的 μ 用 α 替换掉,并将极大化目标求负转为极小化问题,得到:

maxα(∑mi=1αi−12∑mi=1∑mj=1αiαjyiyj(xi⋅xj))=min(12∑mi=1∑mj=1αiαjyiyj(xi⋅xj)−∑mi=1αi)

s.t.∑mi=1αiyi=0;0⩽αi⩽C;i=1,2,...,m

我们对照一下上一篇线性可分 SVM 最优化过程中步骤3的结果,不难发现,两者的极小化目标是一样的,所不同的就是约束条件而已。

所以,在上一篇我们用到的 SMO 算法,同样可以用于此处。运用 SMO 求解出拉格朗日乘子 α1,α2,…,αm。

*4. 根据拉格朗日乘子与主问题参数的关系求解分隔超平面和决策函数*

由 w=∑mi=1αiyixi 求出 w。

因为最终要求得的超平面满足 wx+b=0,这一点是和线性可分 SVM 的超平面一样的,因此求解 b 的过程也可以照搬:

b=1|S|∑s∈S(ys−wxs)

其中 S 是支持向量的集合。

线性 SVM 的支持向量

这里有个问题,到底哪些样本算是线性 SVM 的支持向量

对于线性可分 SVM,支持向量本身是很明确的,就是那些落在最大分隔超平面两侧的两个辅助超平面上的样本。因为样本线性可分,所以这两个辅助超平面中间的硬间隔里,是没有任何样本存在的。

但是,对于线性 SVM,有些不同,这两个辅助超平面中间是软间隔,软间隔的区域内也存在若干样本。这些样本是和辅助超平面上的样本一样算作支持向量呢?还是不算作支持向量?

比如下图中的 sampleA 和 sampleB,前者还好,只是“分得不够清楚”, 后者根本就“跨界”到了“对方的地盘”。它们两个到底算不算支持向量呢?


v2-492dc50577733de716759f2f0e6d0caf_b.jpg

我们先来看看线性 SVM(又名软间隔 SVM)主问题拉格朗日函数的 KKT 条件

αi⩾0,μi⩾0

yif(xi)–1+ξi⩾0

αi(yif(xi)–1+ξi)=0

ξi⩾0

μiξi=0

其中 f(x)=wx+b,i=1,2,…,m

对于任意样本 (xi,yi),要么 αi=0, 要么 yif(xi)–1+ξi=0。

我们又知道 w 的计算公式为:

w=∑mi=1αiyixi

其中拉格朗日乘子为0(即 αi=0)的项,对于 w 的值是没有影响的,能够影响 w 的,一定是对应拉格朗日乘子大于0的样本。

根据 KKT 条件,这样的样本一定同时满足 yif(xi)–1+ξi=0,也就是 yif(xi)=1–ξi。所有这样的样本,都是线性 SVM 的支持向量

在满足 yif(xi)=1–ξi 的前提之下,我们来看 ξi。

若 ξi=0, 则 yif(xi)=1,此时,样本正好落在两个辅助超平面上。所以,两个辅助超平面上的样本,肯定是支持向量。

若 ξi≠0:

当 ξi⩽1 时(例如上图中的 ξA),1−ξi>0, yif(xi)>0。也就是说 yi 和 f(xi) 的结果相乘虽然不为1,但至少这个样本还没有被归错类。

当 ξi>1时(例如上图中的 ξB),1−ξi<0,则 yif(xi)<0,这时,样本根本就被归错了类。但是,即使如此,毕竟这样的样本也影响了最终 w 的取值,所以,它也是支持向量。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值