第20课:SVM——对偶学习算法

本文详细介绍了SVM中的对偶问题,包括主问题、对偶函数、强对偶性以及如何通过对偶问题求解主问题。特别地,讨论了线性可分SVM的对偶问题,并给出了使用SMO算法求解线性可分SVM的步骤,解释了SMO算法的基本思想和优化过程。
摘要由CSDN通过智能技术生成

对偶问题

上一篇我们用 x 和 y 各代表一个维度,用 $z = f(x,y)$ 和 $g(x,y) = 0$ 分别代表一个二元函数和一个一元函数。这样做是为了和图形对比的时候能看得清楚,为了可视化方便。

一般情况下,我们就用 $x$ 代表一个函数的自变量。这个 $x$ 本身可以是多维的。

而且,同一个函数可能同时既有等式约束条件,又有不等式约束条件。

主问题

现在我们考虑在 $d$ 维空间上有 $m$ 个等式约束条件和 $n$ 个不等式约束条件的极小化问题。这样的问题可以写作:

$min f(x),\;其中\;x\;为\;d\;维$。

$s.t. \;\; h_i(x) = 0 , \;\;i = 1,2,…, m; \;\; g_j(x) \leqslant 0, \;\; j = 1,2, …, n$

我们把上述问题称为“原始最优化问题”,也可以叫做“原始问题”或“主问题”。

为了解决原始问题,我们引入拉格朗日乘子 $\lambda = (\lambda_1, \lambda_2, …, \lambda_m)^T $ 和 $\mu = (\mu_1, \mu_2, …, \mu_n)^T $,构造拉格朗日函数为:

$L(x,\lambda,\mu) = f(x) + \sum

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶锦鲤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值