背包问题基础
背包问题大致如下图所示
其中最基础的就是01背包了
01背包
问题原型:
有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
在下面的讲解中,我举一个例子:
背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
依然动规五部曲分析一波。
- 确定dp数组以及下标的含义
对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
只看这个二维数组的定义,大家一定会有点懵,看下面这个图:
要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。
2.确定递推公式
dp[i] = Math.max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i])
只有两种情况
一.放i物品
放i物品意味着i物品是一定在结果中的,所以要先加入i物品进背包中
此时背包的价值有value[i],随后在剩余的容量[j-weight[i]]中求出最大的价值
因为i物品已经被添加,所以可取物品范围应该是[i-1]
所以这种情况的最大价值为value[i]+dp[i-1][j-weight[i]]
二.不放i物品
相当于在当前容量为j的背包中任取下标[0,i-1]的物品的最大价值即dp[i-1][j];
3.dp数组初始化
根据推导公式可以看出,想要使用递推公式,上一层的左上区域决不能为空
所以要初始化dp[0][j]与dp[i][0]的区域
for(int i=weight[0];i<n;i++){ //只放物品0的情况 dp[0][i] = value[0]; }
- 确定遍历顺序
在如下图中,可以看出,有两个遍历的维度:物品与背包重量
那么问题来了,先遍历 物品还是先遍历背包重量呢?
其实都可以!! 但是先遍历物品更好理解。
5.打印dp数组
最后代码整体如下
public static void main(String[]args){
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
int m = sc.nextInt();
int n = sc.nextInt()+1;
//因为n多一种为0的情况,所以+1
int[][] dp = new int[m][n];
//接收物品信息
int[] weight = new int[m];
int[] value = new int[m];
for(int i = 0;i<m;i++){
weight[i] = sc.nextInt();
}
for(int i = 0;i<m;i++){
value[i] = sc.nextInt();
}
for(int i=weight[0];i<n;i++){
//只放物品0的情况
dp[0][i] = value[0];
}
//4.遍历顺序,先遍历物品先遍历背包皆可,但是要保证遍历顺序是从左到右,从上往下的
for(int i =1;i<m;i++){
for(int j = 1;j<n;j++){
//判断下当前背包能不能装下i物品防止越界
if(j<weight[i]){
dp[i][j] = dp[i-1][j];
continue;
}
dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);
}
}
//5.打印dp数组
/*for(int i =0;i<m;i++){
for(int j=0;j<n;j++){
System.out.print(dp[i][j]+"\t");
}
System.out.println();
}*/
System.out.println(dp[m-1][n-1]);
}
}
给你一个 只包含正整数 的 非空 数组 nums
。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 1:
输入:nums = [1,5,11,5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11] 。
示例 2:
输入:nums = [1,2,3,5] 输出:false 解释:数组不能分割成两个元素和相等的子集。
提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100
代码:
class Solution {
public static boolean canPartition(int[] nums) {
//套入01背包问题
//题目中求数组分割成两个子集,使得两个子集的元素和相等。
//那么子集的元素和就是nums所有元素和sum/2,因为最后两个子集元素和是相等的
//那么只要求出有一个子集元素和=sum/2即可,剩下的元素自动视为一个子集
//用背包问题的视角来看的话,就是每个元素的价值和重量相同,背包的容量即为sum/2
//1.dp[i][j]代表在[0,i]中的元素任选,背包的容量为j,使得携带物品的价值最大
int sum =0;
for (int num : nums) {
sum+=num;
}
if(sum%2!=0)return false;//奇数不可能凑出两个元素和一致的整数子集
sum = sum/2+1;//+1是因为有一个0的情况
int[][] dp = new int[nums.length][sum];
//2.递推公式为dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weigh[i]]+value[i]);
//3.初始化d[0][j],dp[i][0]的部分
for(int i = nums[0];i<sum;i++){
dp[0][i] = nums[0];
}
//4.从左往右从上往下遍历
for(int i =1;i<nums.length;i++){
for(int j =1;j<sum;j++){
if(nums[i]>j){
//排除j-nums[i]<0的情况
dp[i][j] = dp[i-1][j];
}
else{
dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-nums[i]]+nums[i]);
}
}
}
//5.打印
return dp[nums.length-1][sum-1]==(sum-1);
}
}
感谢观看!