PGL七日打卡营心得

本文记录了一位初学者参加PGL七日打卡营的学习经历,重点介绍了图神经网络(GNN)的五大类别:图卷积网络、图注意力网络、图自编码器、图生成网络和图时空网络。课程涵盖了从环境安装、节点嵌入到GCN、GAT模型搭建的全过程,还涉及了实际比赛和RNA项目,让作者收获颇丰。
摘要由CSDN通过智能技术生成

PGL七日打卡营心得

关于图神经网络

近年来,人们对深度学习方法在图上的扩展越来越感兴趣。在多方因素的成功推动下,研究人员借鉴了卷积网络、循环网络和深度自动编码器的思想,定义和设计了用于处理图数据的神经网络结构,由此一个新的研究热点——“图神经网络(Graph Neural Networks,GNN)”应运而生。

图神经网络(Graph Neural Networks,GNN),其主要可以分为五大类别分别是:图卷积网络(Graph Convolution Networks,GCN)、 图注意力网络(Graph Attention Networks)、图自编码器( Graph Autoencoders)、图生成网络( Graph Generative Networks) 和图时空网络(Graph Spatial-temporal Networks)

关于这门课

我是一个这个方面都还没怎么入门的小白,但是抱着学习新知识的心态来学习这门课,小斯妹老师真的很认真很努力的把困难的知识点剖析讲解的淋漓尽致,也感谢其他几个不认识的大佬们参与讲课,从安装环境、node embedding的两个算法(DeepWalk与node2vec)到GCN、GAT模型的搭建等,以及后面的采样聚合的代码等,都让我学到了很多东西,再到最后的比赛和RNA的那个小项目,感觉一个星期那么快就结束了。
最后也真诚地感谢百度各位大佬还有我们的班主任和助教们,你们都辛苦啦。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值