HQL练习之谷粒影音

一、统计视频观看数Top10

1.思路

使用order by按照views字段做一个全局排序即可,同时我们设置只显示前10条。

1.SQL

select 
    videoId, 
    uploader, 
    age, 
    category, 
    length, 
    views, 
    rate, 
    ratings, 
    comments 
from 
    gulivideo_orc 
order by 
    views 
desc limit 
    10;

二、统计视频类别热度Top10

1.思路

  1. 即统计每个类别有多少个视频,显示出包含视频最多的前10个类别。
  2. 我们需要按照类别group by聚合,然后count组内的videoId个数即可。
  3. 因为当前表结构为:一个视频对应一个或多个类别。所以如果要group by类别,需要先将类别进行列转行(展开),然后再进行count即可。
  4. 最后按照热度排序,显示前10条。

1.SQL

select 
    category_name as category, 
    count(t1.videoId) as hot 
from (
    select 
        videoId,
        category_name 
    from 
        gulivideo_orc lateral view explode(category) t_catetory as category_name) t1 
group by 
    t1.category_name 
order by 
    hot 
desc limit 
    10;

三、统计出视频观看数最高的20个视频的所属类别以及类别包含Top20视频的个数

1.思路

  1. 先找到观看数最高的20个视频所属条目的所有信息,降序排列
  2. 把这20条信息中的category分裂出来(列转行)
  3. 最后查询视频分类名称和该分类下有多少个Top20的视频

1.SQL

select 
    category_name as category, 
    count(t2.videoId) as hot_with_views 
from (
    select 
        videoId, 
        category_name 
    from (
        select 
            * 
        from 
            gulivideo_orc 
        order by 
            views 
        desc limit 
            20) t1 lateral view explode(category) t_catetory as category_name) t2 
group by 
    category_name 
order by 
    hot_with_views 
desc;

四、统计视频观看数Top50所关联视频的所属类别Rank

1.思路

1.1)查询出观看数最多的前50个视频的所有信息(当然包含了每个视频对应的关联视频),记为临时表t1
t1:观看数前50的视频

select 
    * 
from 
    gulivideo_orc 
order by 
    views 
desc limit 
    50;

2.2)将找到的50条视频信息的相关视频relatedId列转行,记为临时表t2
t2:将相关视频的id进行列转行操作

select 
    explode(relatedId) as videoId 
from 
	t1;

3)将相关视频的id和gulivideo_orc表进行inner join操作
t5:得到两列数据,一列是category,一列是之前查询出来的相关视频id

 (select 
    distinct(t2.videoId), 
    t3.category 
from 
    t2
inner join 
    gulivideo_orc t3 on t2.videoId = t3.videoId) t4 lateral view explode(category) t_catetory as category_name;
  1. 按照视频类别进行分组,统计每组视频个数,然后排行
    最终代码:
select 
    category_name as category, 
    count(t5.videoId) as hot 
from (
    select 
        videoId, 
        category_name 
    from (
        select 
            distinct(t2.videoId), 
            t3.category 
        from (
            select 
                explode(relatedId) as videoId 
            from (
                select 
                    * 
                from 
                    gulivideo_orc 
                order by 
                    views 
                desc limit 
                    50) t1) t2 
        inner join 
            gulivideo_orc t3 on t2.videoId = t3.videoId) t4 lateral view explode(category) t_catetory as category_name) t5
group by 
    category_name 
order by 
    hot 
desc;

五、统计每个类别中的视频热度Top10,以Music为例

1.思路

  1. 要想统计Music类别中的视频热度Top10,需要先找到Music类别,那么就需要将category展开,所以可以创建一张表用于存放categoryId展开的数据。
  2. 向category展开的表中插入数据。
  3. 统计对应类别(Music)中的视频热度。
select 
    videoId, 
    views
from 
    gulivideo_category 
where 
    categoryId = "Music" 
order by 
    views 
desc limit
    10;

六、统计每个类别中视频流量Top10,以Music为例

1.思路

  1. 创建视频类别展开表(categoryId列转行后的表)
  2. 按照ratings排序即可

1.SQL

select 
    videoId,
    views,
    ratings 
from 
    gulivideo_category 
where 
    categoryId = "Music" 
order by 
    ratings 
desc limit 
    10;

七、统计上传视频最多的用户Top10以及他们上传的观看次数在前20的视频

1.思路

  1. 先找到上传视频最多的10个用户的用户信息

1.SQL

select 
    * 
from 
    gulivideo_user_orc 
order by 
    videos 
desc limit 
    10;
  1. 通过uploader字段与gulivideo_orc表进行join,得到的信息按照views观看次数进行排序即可。
    最终代码:
select 
    t2.videoId, 
    t2.views,
    t2.ratings,
    t1.videos,
    t1.friends 
from (
    select 
        * 
    from 
        gulivideo_user_orc 
    order by 
        videos desc 
    limit 
        10) t1 
join 
    gulivideo_orc t2
on 
    t1.uploader = t2.uploader 
order by 
    views desc 
limit 
    20;

八、统计每个类别视频观看数Top10

1.思路

  1. 先得到categoryId展开的表数据
  2. 子查询按照categoryId进行分区,然后分区内排序,并生成递增数字,该递增数字这一列起名为rank列
  3. 通过子查询产生的临时表,查询rank值小于等于10的数据行即可。
    最终代码:
select 
    t1.* 
from (
    select 
        videoId,
        categoryId,
        views,
        row_number() over(partition by categoryId order by views desc) rank from gulivideo_category) t1 
where 
    rank <= 10;
### 回答1: 要统计谷粒影音视频的热门视频,可以使用Hive进行数据分析和统计。以下是一些可能有用的Hive查询: 1. 统计所有视频的播放量,按照播放量从高到低排列: ``` SELECT video_id, COUNT(*) as play_count FROM video_play_records GROUP BY video_id ORDER BY play_count DESC; ``` 2. 统计最受欢迎的视频,按照总播放量从高到低排列: ``` SELECT video_id, SUM(play_count) as total_play_count FROM ( SELECT video_id, COUNT(*) as play_count FROM video_play_records GROUP BY video_id ) a GROUP BY video_id ORDER BY total_play_count DESC; ``` 3. 统计最近一周内播放量最高的视频,按照播放量从高到低排列: ``` SELECT video_id, COUNT(*) as play_count FROM video_play_records WHERE play_time >= DATE_SUB(CURRENT_TIMESTAMP(), 7) -- 最近一周 GROUP BY video_id ORDER BY play_count DESC; ``` 这些查询可以帮助我们找出谷粒影音视频中最热门的视频。当然,具体的查询语句和统计方法需要根据实际情况进行调整和优化。 ### 回答2: Hive是一个基于Hadoop的数据仓库工具,用于存储和分析大规模的结构化数据。要使用Hive统计谷粒影音热门视频,需要以下步骤: 1. 建立Hive表:首先,在Hive中创建一个表来存储谷粒影音视频数据。可以定义表的字段,如视频ID、标题、发布日期、观看次数等。 2. 导入数据:将谷粒影音视频数据导入到Hive表中。可以使用Hive提供的LOAD命令或从其他数据源(如文件、数据库)导入数据。 3. 编写查询语句:使用Hive的查询语言HQL编写查询语句来统计热门视频。可以使用ORDER BY和LIMIT子句来获取观看次数最多的视频。例如,可以编写类似以下的查询语句: SELECT 视频ID, 标题, 观看次数 FROM 谷粒影音表 ORDER BY 观看次数 DESC LIMIT 10; 上述查询语句将按照观看次数降序排列视频,并返回观看次数最多的前10个视频视频ID、标题和观看次数。 4. 运行查询:在Hive中执行查询语句,获得热门视频的统计结果。Hive会使用MapReduce或Tez等计算框架来处理大规模的数据。 5. 分析结果:根据查询的结果进行统计分析,可以了解谷粒影音中最受欢迎的视频,或者识别出观看次数较低的视频,并进行进一步的优化或调整。 通过以上步骤,可以使用Hive谷粒影音视频数据进行统计,快速找出热门视频,为业务决策和推荐等方面提供支持。 ### 回答3: Hive是一个基于Hadoop的数据仓库基础结构,用于处理大规模数据集。 统计谷粒影音热门视频可以通过Hive进行实现。 首先,我们需要通过Hive创建一个与谷粒影音视频相关的表,包含视频的各种属性,例如视频ID,标题,上传时间,观看次数等等。这可以通过使用Hive的DDL(数据定义语言)来实现。 接下来,我们可以使用Hive的数据操作语言(DML)来查询表中的数据,以统计热门视频。例如,我们可以使用类似以下的Hive查询语句: ``` SELECT video_id, title, views FROM video_table ORDER BY views DESC LIMIT 10; ``` 上述查询语句将从视频表中选择视频ID,标题和观看次数,并按观看次数降序排列。我们可以使用LIMIT关键字限制返回结果的数量,例如这里我们只返回前10个热门视频。 除了观看次数之外,还可以使用其他指标来确定热门视频,如点赞数、评论数等。我们可以根据需求修改查询语句以适应不同的统计需求。 最后,我们可以将查询结果导出到其他存储系统,如HDFS(Hadoop分布式文件系统)或RDBMS(关系型数据库管理系统),以便进一步分析或展示热门视频数据。 总而言之,通过Hive的DDL和DML语言,我们可以建立和查询谷粒影音视频表,然后根据不同的统计需求使用特定的查询语句,最后将结果导出到其他存储系统,从而实现热门视频的统计分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值