Concrete Mathematics - Recurrent Problems - (3)

Chapter One: Recurrent Problems

Warmups

3. Show that, in the process of transferring a tower under the restrictions of the preceding exercise, we will actually encounter every properly stacked arrangement of n disks on three pegs.

Here, the preceding exercise is referred to the exercise in Chapter One warmups exercise 2. In my opinion, every properly stacked arrangement of n disks is referred to as the following kinds of arrangements: (we mark n disks as d1, d2, ..., dn)

1) arrangements compose of 1 disk, such as: (d1), (d2), ..., (dn). There are n arrangements of such kind.

2) arrangements compose of 2 disks, such as: (d1, d2), (d1, d3), ..., (d1, dn), (d2, d3), (d2, d3), ..., (dn-1, dn). There are C(n,2) arrangements of such kind, where C(n,2) is the number of compositions of 2 elements selected from n  elements.

3) arrangements compose of 3 disks, such as: (d1, d2, d3), (d1, d2, d4), ..., (dn-2, dn-1, dn). There are C(n, 3) arrangements of such kind.

4) as of 3), but instead arrangements compose of 4 disks.

......

n) arrangements compose of n disks, only (d1, d2, ..., dn).

The total number of arrangements is T(n) = C(n, 1) + C(n, 2) + C(n, 3) + ...... + C(n, n). And the question is all these T(n) arrangements would occur at least once on three pegs during the process of transferring disks in the preceding exercise. 

At the first glance, it seems hard to prove because there are T(n) arrangements!! After thinking of several hours, inspired by the previous horse problem, why not use induction? Yes, induction is a suitable tool here.

a) First, we prove the basis. Let n = 1, this should be the trivial case, for d1 would appear on three pegs.

b) Now, we assume that for n >= 1, the proposition in the question holds, and we proceed to prove the proposition holds for n+1 disks. As the steps described in the previous exercise 2 can be divided into three phrase:

ba) When the dn+1 disk is in A, we would need to move n disk above dn+1 from A to B. During this process, according to the assumption, the T(n) arrangements would appear at least once in A, and since dn+1 is at the bottom in A, the T(n+1)-T(n) arrangements would appear at least once in A, and T(n) arrangements would appear at least once in C, and T(n) arrangements would appear at least once in B.

bb) When the dn+1 disk is in C, we would need to move n disk from B to A. During this process, according to the assumption, the T(n) arrangements would appear at least once in C, and since dn+1 is at the bottom in C, the T(n+1)-T(n) arrangements would appear at least once in C, and T(n) arrangements would appear at least once in A and B.

bc) Similarly, when the dn+1 disk is in B, we would need to move n disk from A to B. During this process, according to the assumption, the T(n) arrangements would appear at least once in B, and since dn+1 is at the bottom in B, the T(n+1)-T(n) arrangements would appear at least once in B, and T(n) arrangements would appear at least once in A and C.

bd) Take all analysis above, during the process of moving n+1 disks from A to B, we have T(n+1) arrangements appear at least once in A and B and C, so the proposition holds for n+1.

c) QED


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值