深度学习面经一

本人本科刚毕业。在广州那边实习了接近一年,都是一些智能医疗相关的项目。跳槽,想在深圳这边找关于深度学习的岗位,面试中碰到的一些问题,在这里总结一下。(2018.07)

1.Faster rcnn 的流程,rpn的原理,加速的原因,卷积核大小。

2.yolo v3的细节

3.Resnet残差结构的作用

4.softmax层可以做分类层的原因

5.L1,L2范式的作用和区别

6.推导反向传播算法

7.梯度向下降算法在并行计算中参数是怎么共享的

8.加速卷积神经网络训练的手段有哪些

9.防止过拟合的方法

10.为什么交叉熵可以作为损失函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值