深度学习面经

35 篇文章 443 订阅 ¥9.90 ¥99.00
31 篇文章 454 订阅 ¥9.90 ¥99.00
本文介绍了深度学习中欠拟合和过拟合的概念及其解决方案。欠拟合可通过增加模型复杂度来改善,而过拟合可以通过数据增强、降低模型复杂度、正则化等方法解决。讨论了L1、L2正则化、激活函数的作用,特别是ReLU的优劣。还探讨了Batch Normalization、Dropout等技术,以及如何设置网络初始值、处理梯度爆炸等问题。
摘要由CSDN通过智能技术生成

欠拟合与过拟合:

  • 欠拟合:指模型不能在训练集上获得足够低的训练误差
  • 过拟合:指模型的训练误差与测试误差之间的差距过大,反映在评价指标上,就是模型在训练集上表现良好,在测试集上表现一般(泛化能力差)

降低过拟合风险的方法:

  • 数据增强
  1. 平移、旋转、缩放
  2. 利用生成对抗网络生成新数据 
  •  降低模型复杂度
  1. 神经网络:减少网络层数、神经个数、添加dropout层、训练提前终止
  2. 决策树:降低树的深度、剪枝 
  • 权值约束 
  1. L1正则化
  2. L2正则化 
  • 交叉验证 

 降低欠拟合风险的方法:

  • 增加模型复杂度 
  1. 线性模型:添加高次项
  2. 神将网络:增加网路层数/神经元个数 

 反向传播的作用、目的、本质

梯度下降法中需要利用损失函数对所有参数的梯度来寻找局部最小值点,而反向传播就是用于计算该梯度的方法,其本质是利用链式法则对每个参数求导。 

激活函数的作用--为什么要使用非线性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东城青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值