街景字符编码识别_Task03字符识别模型

1 CNN原理

卷积神经网络CNN主要用于图像识别。

神经网络前向传播过程:
一般而言,输入的图像数据经过若干层卷积和池化处理,映射出特征向量/feature map,将特征向量传入全连接层中,得出分类识别的结果。当输出的结果与我们的期望值相符时,输出最后结果。

卷积:作用是提取特征图
池化:又称降采样/down_sampling,包括最大池化/max pooling、平均池化average pooling等,作用是降维
全连接:将学到的“分布式特征表示”映射到样本标记空间;对前层是全连接的全连接层可以转化为卷积核为1x1的卷积,而前层是卷积层的全连接层可以转化为卷积核为hxw的全局卷积(h和w即前层卷积结果的高和宽)

当卷积神经网络输出的结果与我们的期望值不相符时,则进行反向传播过程。求出结果与期望值的误差,再将误差一层一层的返回,计算出每一层的误差,然后进行权值更新。

卷积神经网络的反向传播过程:
当卷积神经网络输出的结果与我们的期望值不相符时,则进行反向传播过程。求出结果与期望值的误差,再将误差一层一层的返回,计算出每一层的误差,然后进行权值更新。

2 CNN的构建并理解

以下是简单的CNN实现,包含两个卷积和6个全连接

import torch
torch.manual_seed(0) 
torch.backends.cudnn.deterministic = False 
torch.backends.cudnn.benchmark = True
import torchvision.models as models
import torchvision.transforms as transforms 
import torchvision.datasets as datasets 
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset

# 定义模型
class SVHN_Model1(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__() # CNN提取特征模块
        self.cnn = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)), 
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)), 
            nn.ReLU(),
            nn.MaxPool2d(2),
        )

        self.fc1 = nn.Linear(32*3*7, 11) 
        self.fc2 = nn.Linear(32*3*7, 11) 
        self.fc3 = nn.Linear(32*3*7, 11) 
        self.fc4 = nn.Linear(32*3*7, 11) 
        self.fc5 = nn.Linear(32*3*7, 11) 
        self.fc6 = nn.Linear(32*3*7, 11)

        def forward(self, img):
            feat = self.cnn(img)
            feat = feat.view(feat.shape[0], -1) 
            c1 = self.fc1(feat)
            c2 = self.fc2(feat)
            c3 = self.fc3(feat)
            c4 = self.fc4(feat)
            c5 = self.fc5(feat)
            c6 = self.fc6(feat)
            return c1, c2, c3, c4, c5, c6
    
model = SVHN_Model1()
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.Adam(model.parameters(), 0.005)
loss_plot, c0_plot = [], []

# 迭代10个Epoch
for epoch in range(10):
    for data in train_loader:
        c0, c1, c2, c3, c4, c5 = model(data[0]) 
        loss = criterion(c0, data[1][:, 0]) + \
                criterion(c1, data[1][:, 1]) + \
                criterion(c2, data[1][:, 2]) + \
                criterion(c3, data[1][:, 3]) + \
                criterion(c4, data[1][:, 4]) + \
                criterion(c5, data[1][:, 5])
        loss /= 6 
        optimizer.zero_grad() 
        loss.backward() 
        optimizer.step()
        loss_plot.append(loss.item())
        c0_plot.append((c0.argmax(1) == data[1][:, 0]).sum().item()*1.0 / c0.shape[0])
        
print(epoch)
天池是一个著名的数据科学竞赛平台,而datawhale是一家致力于数据科学教育和社群建设的组织。街景字符编码识别是指通过计算机视觉技术,对街道场景中的字符进行自动识别和分类。 街景字符编码识别是一项重要的研究领域,对于提高交通安全、城市管理和智能驾驶技术都具有重要意义。街道场景中的字符包括道路标志、车牌号码、店铺招牌等。通过对这些字符进行准确的识别,可以辅助交通管理人员进行交通监管、道路规划和交通流量分析。同时,在智能驾驶领域,街景字符编码识别也是一项关键技术,可以帮助自动驾驶系统准确地识别和理解道路上的各种标志和标识,为自动驾驶提供可靠的环境感知能力。 天池和datawhale联合举办街景字符编码识别竞赛,旨在吸引全球数据科学和计算机视觉领域的优秀人才,集思广益,共同推动该领域的研究和发展。通过这个竞赛,参赛选手可以使用各种机器学习和深度学习算法,基于提供的街景字符数据集,设计和训练模型,实现准确的字符编码识别。这个竞赛不仅有助于促进算法研发和技术创新,也为各参赛选手提供了一个学习、交流和展示自己技能的平台。 总之,天池datawhale街景字符编码识别是一个具有挑战性和实际应用需求的竞赛项目,旨在推动计算机视觉和智能交通领域的技术发展,同时也为数据科学爱好者提供了一个学习和展示自己能力的机会。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值