街景字符编码识别Task03-CNN发展介绍及Pytorch构建CNN模型

本文介绍了卷积神经网络的基础知识,包括LeNet、AlexNet、VGG、GoogLeNet和ResNet等经典模型的发展历程。然后,通过PyTorch构建CNN模型,展示了如何定义模型结构、训练和验证过程。文章提供了详细的CNN模型结构和PyTorch实现步骤。
摘要由CSDN通过智能技术生成

Task03:字符识别模型

学习目标

  • 学习CNN基础知识和发展史
  • 使用Pytorch框架构建CNN模型,并完成训练

目录

一、卷积神经网络

二、卷积神经网络模型发展

1.LeNet 模型

2.AlexNet模型

3.VGG模型

4.GoogLeNet模型

5.ResNet模型

三、Pytorch构建CNN模型

1.定义CNN模型结构

2.定义好训练、验证和预测模块

3.迭代训练和验证模型

四、参考


一、卷积神经网络

卷积神经网络(Convolutional Neural Network)简称CNN,是图像识别领域的深度神经网络模型。

CNN中的二维卷积核,常用于处理图像数据。如下最下面蓝色的代表输入图片,图片上有窗口为3x3的卷积核在扫描图片,图片输入和卷积核做互相关运算,并加上一个标量偏置来得到上方绿色的特征图谱输出。卷积层的模型参数包括卷积核和标量偏置,可认为下面的卷积核有3x3+1=10个参数。

卷积核移动时有填充和步幅,通过卷积核的移动,可以对给定形状的输入改变其输出形状。填充(padding)是指在输入图片的高和宽的两侧填充元素(通常是0元素)。在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)

 窗口为3x3的卷积核在图片上扫描与运算的过程如下:

多输入通道和多输出通道

1. 以上的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是h和w(像素),那么图片可以表示为一个3×h×w的多维数组。

2. 将大小为3的这一维称为通道(channel)维。卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为ci和co,高和宽分别为h和w。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为ci×h×w的核数组,将它们在输出通道维上连结,卷积核的形状即co×ci×h×w。

池化

池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图像处理中的卷积神经网络一般使用二维池化层。

二、卷积神经网络模型发展

CNN发展过程中主要诞生了五大经典模型,它们分别是LeNet、AlexNet、GoogLeNet、VGG、ResNet。

1.LeNet 模型

LeNet分为卷积层块和全连接层块两个部分:

卷积层块里的基本单位是卷积层后接平均池化层。卷积层用来识别图像里的空间模式,如线条和物体局部;之后的平均池化层则用来降低卷积层对位置的敏感性,对卷积层输出的结果进行采样,压缩图像尺寸大小。卷积层块由两个这样的基本单位重复堆叠构成。

全连接层块:其中的向量全部展开成一维向量,一维向量与权重向量进行点积运算,在加上一个偏置,通过激活函数后输出,得到新的神经元输出。

在卷积层块中,每个卷积层都使用5×5的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。
卷积神经网络就是含卷积层的网络,LeNet交替使用卷积层和最大池化层后接全连接层来进行图像分类。

2.AlexNet模型

AlexNet模型首次证明了学习到的特征可以超越⼿⼯设计的特征,⼀举打破计算机视觉研究的前状。它有以下四点特征:

1)8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。

2)将sigmoid激活函数改成了更加简单的ReLU激活函数。

3)用Dropout来控制全连接层的模型复杂度。

4)引入数据增强,如翻转、裁剪和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值