深度学习·wandb

wandb

一个好用的可视化训练过程和调参工具,建议在深度学习中使用,语法来说更加方便

前置工作

这里是一些简单的网络结构,用于测试

数据集:

  • Kaggle上HeartDisease的0-1分类问题
    df=pd.read_csv('../data/heart_attack/heart.csv')

数据集的迭代:

  • X=torch.tensor(X.values,device=config.device,dtype=torch.float32) y=torch.tensor(y.values,device=config.device,dtype=torch.float32).reshape(-1,1) dataset=TensorDataset(X,y) dataloader=DataLoader(dataset,batch_size=config.batch_size,shuffle=True)

简单的DNN

class DNN(nn.Module):
    def __init__(self,input_size,hidden_size,dropout:float):
        super().__init__()
        self.input_size=input_size
        
        self.hidden_size=hidden_size
        
        self.fc1=nn.Linear(self.input_size,self.hidden_size)
        
        self.fc2=nn.Linear(self.hidden_size,self.hidden_size)
        
        self.fc3=nn.Linear(self.hidden_size,1)
        
        self.dropout=nn.Dropout(dropout)
    def forward(self,x):
        x=F.leaky_relu(self.fc1(x))
        x=self.dropout(x)
        x=F.leaky_relu(self.fc2(x))
        x=self.dropout(x)
        x=self.fc3(x)
        return x

wandb监视训练过程

使用login()登陆

import os
os.environ["WANDB_API_KEY"] = "xxxx"
wandb.login(key=os.environ['WANDB_API_KEY'])

初始化wandb

  • 建议使用系统时间:
    current_time = datetime.now()
    standard_time = current_time.strftime("%Y-%m-%d %H:%M:%S")
    name=standard_time
  • 初始化:
    注意保存wand.run.id方便继续监视该模型
    wandb.init(project=config.project_name,name=name,config=config.__dict__)# 转换为dict    
    model_run_id=wandb.run.id

训练流程中记录参数

    for epoch in tqdm(range(config.epochs)):
        for X,y in dataloader:
        # 反向传播
        # 评估指标
        wandb.log({'epoch':epoch+1,'val_acc':val_acc,'best_acc':best_metric})
    wandb.finish()

wandb.log从接口收到对应参数,wandb.finish()完成记录,主要不要漏掉finish

继续训练

  • 提供run.id并将resume设置为must
    wandb.init(project=config.project_name,id=model_run_id,resume='must')

Artifact工件

工件可以是代码也可以是数据集
第一个参数是名称,第二个是类型

wandb.init(project=config.project_name,id=model_run_id,resume='must')
arti_dataset=wandb.Artifact('HeartDisease',type='dataset')
arti_dataset.add_dir('../data/heart_attack/')
wandb.log_artifact(arti_dataset)
```python
arti_code=wandb.Artifact('ipynb',type='code')
arti_code.add_file('./wand_test.ipynb')
wandb.log_artifact(arti_code)
wandb.finish()

Table

可视化分析

wandb.init(project=config.project_name,id=model_run_id,resume='must')
good_cases=wandb.Table(columns=['id','GroundTrue','Prediction'])
bad_cases=wandb.Table(columns=['id','GroundTrue','Prediction'])

在代码中加入如下:

good_cases.add_data(i,y,prediction)

一般是用于比对feature、label和prediction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值