问题描述
给定一个环,A[1], A[2], A[3], … , A[n],其中 A[1] 的左边是 A[n]。要求从环上找出一段长度不超过 K 的连续序列,使其和最大。
Input
第一行一个整数 T,表示数据组数,不超过 100。
每组数据第一行给定两个整数 N K。(1 ≤ N ≤ 100000, 1 ≤ K ≤ N)
接下来一行,给出 N 个整数。(-1000 ≤ A[i] ≤ 1000)。
Output
对于每一组数据,输出满足条件的最大连续和以及起始位置和终止位置。如果有多个结果,输出起始位置最小的,如果还是有多组结果,输出长度最短的。
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
问题分析
问题概括为从一个长度为 n 的环上,找出一段长度不超过 K 的连续序列,使其和最大。
贪心做法去维护前缀和sum,假设我们选了[L,R],那么ans=sum[R]-sum[L-1]。
i=1到n,遍历一遍,需要记录一个L(L<=i)使得sum[L]是sum数组中最小的。
若用动态规化的思想去解决:
设定状态:
• f[i] 表示以 i 为结尾的最大连续子段和。
• 答案为 max{f[i]}
• 转移方程可列为:
f[i] = sum[i] - min{ sum[j] } (i-k<=j<=i)
此时的时间复杂度为 O(n*m)。
因为减数已经有了位置的限定,不能用一个变量来记录(维护)。
可以采用类似滑动窗口的思路,维护一个最大容量为 m 的单调队列,就能够将每次 m 的遍历优化到常数。
优化后的时间复杂度仍为 O(n)。
对于环,我们可以变环为链去解决。
#include<stdio.h>
#include<deque>
#include<string.h>
using namespace std;
deque<int>q;
int a[100010],sum[200020];
int main(){
int T,N,K;
scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&K);
for(int i=1;i<=N;i++)
scanf("%d",&a[i]);
int ans=a[1]-1,L,R;
memset(sum,0,sizeof sum);
for(int i=1;i<=N;i++)
sum[i]=sum[i-1]+a[i];
for(int i=N+1;i<=N+K;i++)
sum[i]=sum[i-1]+a[i-N];
q.clear();
q.push_back(0);
for(int i=1;i<=N+K;i++){
if(ans<sum[i]-sum[q.front()]){
ans=sum[i]-sum[q.front()];
R=i,L=q.front()+1;
}
while(!q.empty() && sum[q.back()]>sum[i])
q.pop_back();
q.push_back(i);
while(i+1-q.front()>K)
q.pop_front();
}
if(R>N)R=R-N;
printf("%d %d %d\n",ans,L,R);
}
return 0;
}
本文探讨了在环形序列中寻找长度不超过K的最大连续子序列和的问题,通过转化为链式序列并应用滑动窗口与单调队列优化,实现O(n)时间复杂度的高效求解。
1026

被折叠的 条评论
为什么被折叠?



