环上取数【动态规划dp】【单调队列优化】

本文探讨了在环形序列中寻找长度不超过K的最大连续子序列和的问题,通过转化为链式序列并应用滑动窗口与单调队列优化,实现O(n)时间复杂度的高效求解。

问题描述

给定一个环,A[1], A[2], A[3], … , A[n],其中 A[1] 的左边是 A[n]。要求从环上找出一段长度不超过 K 的连续序列,使其和最大。

Input

第一行一个整数 T,表示数据组数,不超过 100。
每组数据第一行给定两个整数 N K。(1 ≤ N ≤ 100000, 1 ≤ K ≤ N)
接下来一行,给出 N 个整数。(-1000 ≤ A[i] ≤ 1000)。

Output

对于每一组数据,输出满足条件的最大连续和以及起始位置和终止位置。如果有多个结果,输出起始位置最小的,如果还是有多组结果,输出长度最短的。

Sample Input

4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1

Sample Output

7 1 3
7 1 3
7 6 2
-1 1 1

问题分析

问题概括为从一个长度为 n 的环上,找出一段长度不超过 K 的连续序列,使其和最大。
贪心做法去维护前缀和sum,假设我们选了[L,R],那么ans=sum[R]-sum[L-1]。
i=1到n,遍历一遍,需要记录一个L(L<=i)使得sum[L]是sum数组中最小的。

若用动态规化的思想去解决:

设定状态:
• f[i] 表示以 i 为结尾的最大连续子段和。
• 答案为 max{f[i]}
• 转移方程可列为:
f[i] = sum[i] - min{ sum[j] } (i-k<=j<=i)

此时的时间复杂度为 O(n*m)。
因为减数已经有了位置的限定,不能用一个变量来记录(维护)。
可以采用类似滑动窗口的思路,维护一个最大容量为 m 的单调队列,就能够将每次 m 的遍历优化到常数。
优化后的时间复杂度仍为 O(n)。

对于环,我们可以变环为链去解决。

#include<stdio.h>
#include<deque>
#include<string.h>
using namespace std;
deque<int>q;
int a[100010],sum[200020];
int main(){
	int T,N,K;
	scanf("%d",&T);
	while(T--){
		scanf("%d%d",&N,&K);
		for(int i=1;i<=N;i++)
			scanf("%d",&a[i]);
		int ans=a[1]-1,L,R;
		memset(sum,0,sizeof sum);
		for(int i=1;i<=N;i++)
			sum[i]=sum[i-1]+a[i];
		for(int i=N+1;i<=N+K;i++)
			sum[i]=sum[i-1]+a[i-N];
		q.clear();
		q.push_back(0);
		for(int i=1;i<=N+K;i++){
			if(ans<sum[i]-sum[q.front()]){
				ans=sum[i]-sum[q.front()];
				R=i,L=q.front()+1;
			}
			while(!q.empty() && sum[q.back()]>sum[i])
				q.pop_back();
			q.push_back(i);
			while(i+1-q.front()>K)
				q.pop_front();
		}
		if(R>N)R=R-N;
		printf("%d %d %d\n",ans,L,R);
	} 
	return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值