插值算法[数学建模]

插值算法

在工程和数学应用中,经常有这样一类数据处理问题,在平面上给定一组离散点列,要求一条曲线,把这些点按次序连接起来,称为插值。
在这里插入图片描述

一维数据插值方法

在这里插入图片描述

已知 n+1 个点 (xi ,yi)(i = 0, 1, … , n) 下面求各种插值函数。

分段线性插值

简单地说,就是将每两个相邻的节点用直线连接起来,如此形成一条折线就是分段线性插值函数,记作 I(x),它满足I(xi) = yi,且 I(x) 在每个小区间 [xi, xi+1] 上是线性函数 (i = 0,1,…,n-1)。
具有良好的收敛性
计算 x 点差值时,只用到 x 左右两个节点,计算量与节点个数 n 无关。但 n 越大,分段越多,插值误差越小。
在这里插入图片描述

分段二次插值(分段抛物插值)

拉格朗日插值法

百度百科定义如下图:
百度百科定义
在这里插入图片描述

龙格现象

插值多项式次数越高误差越小吗?不是的

高次插值会产生龙格现象,即在两端波动大,产生明显的震荡
在不熟悉曲线运动趋势得前提下,不要轻易使用高次插值。

牛顿插值法

在这里插入图片描述
牛顿插值法的计算过程具有继承性

拉格朗日、牛顿插值法 不能全面反映被插函数性态。

埃尔米特插值法

不仅要求节点函数值相等,也要求对应导数值相等,甚至高阶导数。
在这里插入图片描述
分段减轻龙格现象

分段三次埃尔米特插值PCHIP

Matlab有内置函数:
p = pchip(x , y , new_x);

样条插值

数学上将具有一定光滑性的分段多项式成为样条函数。

三次样条插值

条件:二阶连续可微
在这里插入图片描述
Matlab有内置函数:
p = spline(x , y , new_x);

n维数据插值

在这里插入图片描述

应用

可以用来做预测,补全数据。一般建模中常用分段三次埃尔米特插值和三次样条插值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值