华为昇腾MindIE+Dify本地私有化部署大模型 经验分享

华为昇腾MindIE+Dify本地私有化部署大模型 经验分享

本教程适用完全无网络的封闭环境部署

本文旨在分享使用华为昇腾MindIE(Mind Inference Engine,昇腾推理引擎)结合Dify(大模型应用开发平台)成功部署通义千问和deepseek等大语言模型,并上线问答助手等应用的经验,同时也是对自己前段时间的工作进行一个总结。

我会分享我在项目过程中踩过的坑,遇到的bug,以及实测解决的方法。目前计划分为6篇文章,系列文章持续更新中。

本篇文章是系列文章的目录,也是我在项目过程中自行搜罗到的实用资源分享,包括了镜像下载链接、模型下载链接,以及华为昇腾官方的模型部署教程。



实用资源分享

昇腾镜像仓库:https://www.hiascend.com/developer/ascendhub
昇腾ModelZoo模型库:https://www.hiascend.com/software/modelzoo/models

部署LLM需要推理镜像,名称:mindie,地址:https://www.hiascend.com/developer/ascendhub/detail/af85b724a7e5469ebd7ea13c3439d48f
注意选择适配自己系统架构的版本arm64 / x86_64

部署embedding、rerank模型需要text embedding inference 镜像,名称:mis-tei,地址:https://www.hiascend.com/developer/

### 华为昇腾AI处理器上的Dify模型或应用部署 #### 硬件与软件准备 为了在华为昇腾AI处理器上成功部署Dify模型或应用程序,需确保硬件配置满足需求。具体来说,应采用环境型号CANN版本加速卡推理环境Atlas800-3010推理服务器搭配两个Atlas300IPro加速卡,并安装CANN8.0.RC2及以上版本的软件栈[^2]。 #### 部署流程概述 针对Dify这类大型语言模型的应用部署,在华为昇腾平台上主要涉及以下几个方面的工作: - **环境搭建** 安装并配置好支持昇腾系列产品的计算架构神经网络(CANN),这是运行任何深度学习算法的基础。 - **框架适配** 使用兼容于昇腾设备的深度学习框架如MindSpore来加载预训练好的Dify模型权重文件;对于其他不直接支持昇腾的目标转换工具链可能也需要参与其中以便完成特定优化操作。 - **性能调优** 利用AscendCL库提供的API接口实现对模型参数量化处理(例如通过GPTQ、AWQ等方式),从而提高推理效率降低资源消耗的同时保持较高的精度水平[^1]。 - **服务化封装** 将经过上述步骤调整后的模型集成到Web界面或其他形式的服务端程序里去,比如借助Gradio构建易于使用的交互式前端页面让用户能够方便地提交请求获取响应结果。 ```python import mindspore as ms from gradio import Interface, Textbox def load_model(): # 加载已经适应昇腾平台的difuy模型 model = ms.load_checkpoint('path_to_dify_model') return model def predict(text_input): model = load_model() output = model.predict([text_input]) return str(output) iface = Interface(fn=predict, inputs=Textbox(), outputs='text') iface.launch(share=True) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值