超超超详细分享!!Dify本地化部署流程和使用说明 以及如何接入华为昇腾MindIE本地私有化部署的大模型

Dify本地化部署流程和使用说明

本教程包含搭建本地私有化聊天助手,以及工作流的方法
本文是《华为昇腾MindIE+Dify本地私有化部署大模型 经验分享》系列文章的第二篇。分享了本地化部署Dify和使用API接入大模型(在线大模型、华为NPU驱动的本地大模型)的经验。



Dify是什么?

Dify是一个开源的LLM应用开发平台。其直观的界面结合了AI工作流、RAG管道、Agent、模型管理、可观测性功能等,可以实现快速从原型到生产。


1.系统要求

在安装 Dify 之前,请确保机器满足以下最低系统要求:

CPU >= 2 Core
RAM >= 4 GiB

2.Dify本地部署

2.1 下载并安装Docker和Docker Compose

部署Dify之前,需要先安装好Docker和Docker Compose,以管理Dify镜像。国内访问可以在Docker中文网上下载,选择对应系统安装:

https://docker.github.net.cn/get-docker/

Docker中文网

2.2 在GitHub上下载Dify压缩包

从GitHub下载压缩包
或在终端执行:

git clone https://github.com/langgenius/dify.git

2.3 在终端启动Dify服务

可以直接使用docker客户端提供的终端界面进行操作:
在Dify里打开终端界面

在终端里输入如下命令:

docker --version
docker-compose --version

检查docker是否已经成功安装。成功安装会返回版本号:

安装成功,返回版本号

通过cd命令进入如下路径,以Dify下载在桌面为例:

cd .\Desktop\dify-main\docker\

再执行如下语句设置环境文件:

cp .env.example .env

最后启动容器:

<
### 华为昇腾AI处理器上的Dify模型或应用部署 #### 硬件与软件准备 为了在华为昇腾AI处理器上成功部署Dify模型或应用程序,需确保硬件配置满足需求。具体来说,应采用环境型号CANN版本加速卡推理环境Atlas800-3010推理服务器搭配两个Atlas300IPro加速卡,并安装CANN8.0.RC2及以上版本的软件栈[^2]。 #### 部署流程概述 针对Dify这类大型语言模型的应用部署,在华为昇腾平台上主要涉及以下几个方面的工作: - **环境搭建** 安装并配置好支持昇腾系列产品的计算架构神经网络(CANN),这是运行任何深度学习算法的基础。 - **框架适配** 使用兼容于昇腾设备的深度学习框架如MindSpore来加载预训练好的Dify模型权重文件;对于其他不直接支持昇腾的目标转换工具链可能也需要参与其中以便完成特定优化操作。 - **性能调优** 利用AscendCL库提供的API接口实现对模型参数量化处理(例如通过GPTQ、AWQ等方式),从而提高推理效率降低资源消耗的同时保持较高的精度水平[^1]。 - **服务化封装** 将经过上述步骤调整后的模型集成到Web界面或其他形式的服务端程序里去,比如借助Gradio构建易于使用的交互式前端页面让用户能够方便地提交请求获取响应结果。 ```python import mindspore as ms from gradio import Interface, Textbox def load_model(): # 加载已经适应昇腾平台的difuy模型 model = ms.load_checkpoint('path_to_dify_model') return model def predict(text_input): model = load_model() output = model.predict([text_input]) return str(output) iface = Interface(fn=predict, inputs=Textbox(), outputs='text') iface.launch(share=True) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值