- 求下列微分方程的通解:
(1) y ′ ′ − 3 y ′ + 2 y = 0 y''-3y'+2y=0 y′′−3y′+2y=0; (2) 4 y ′ ′ + 5 y ′ + y = 0 4y''+5y'+y=0 4y′′+5y′+y=0; (3) y ′ ′ + 6 y ′ + 9 y = 0 y''+6y'+9y=0 y′′+6y′+9y=0;
(4) y ′ ′ + 4 y ′ + 5 y = 0 y''+4y'+5y=0 y′′+4y′+5y=0; (5) y ′ ′ − y ′ + 2 y = 0 y''-y'+2y=0 y′′−y′+2y=0; (6) y ′ ′ ′ + 2 y ′ ′ − y ′ = 0 y'''+2y''-y'=0 y′′′+2y′′−y′=0.
解:
(1) 特征方程为 λ 2 − 3 λ + 2 = 0 \lambda^2-3\lambda+2=0 λ2−3λ+2=0,解得 λ 1 = 1 , λ 2 = 2 \lambda_1=1,\lambda_2=2 λ1=1,λ2=2
所以通解为 y = C 1 e x + C 2 e 2 x y=C_1e^x+C_2e^{2x} y=C1ex+C2e2x
(2) 特征方程为 4 λ 2 + 5 x + 1 = 0 4\lambda^2+5x+1=0 4λ2+5x+1=0,解得 λ 1 = − 1 , λ 2 = − 1 4 \lambda_1=-1,\lambda_2=-\frac{1}{4} λ1=−1,λ2=−41
所以通解为 y = C 1 e − x + C 2 e − 1 4 x y=C_1e^{-x}+C_2e^{-\frac{1}{4}x} y=C1e−x+C2e−41x
(3) 特征方程为 λ 2 + 6 λ + 9 = 0 \lambda^2+6\lambda+9=0 λ2+6λ+9=0,解得 λ 1 = λ 2 = − 3 \lambda_1=\lambda_2=-3 λ1=λ2=−3
所以通解为 y = ( C 1 + C 2 x ) e − 3 x y=(C_1+C_2x)e^{-3x} y=(C1+C2x)e−3x
(4) 特征方程为 λ 2 + 4 λ + 5 = 0 \lambda^2+4\lambda+5=0 λ2+4λ+5=0,解得 λ 1 = − i − 2 , λ 2 = i − 2 \lambda_1=-i-2,\lambda_2=i-2 λ1=−i−2,λ2=i−2
所以通解为 y = ( C 1 c o s x + C 2 s i n x ) e − 2 x y=(C_1cosx+C_2sinx)e^{-2x} y=(C1cosx+C2sinx)e−2x
(5) 特征方程为 λ 2 − λ + 2 = 0 \lambda^2-\lambda+2=0 λ2−λ+2=0,解得 λ 1 = − 7 i + 1 2 , λ 2 = 7 i + 1 2 \lambda_1=\frac{-\sqrt{7}i+1}{2},\lambda_2=\frac{\sqrt{7}i+1}{2} λ1=2−7i+1,λ2=27i+1
所以通解为 y = ( C 1 c o s 7 2 x + C 2 s i n 7 2 x ) e 1 2 x y=(C_1cos\frac{\sqrt{7}}{2}x+C_2sin\frac{\sqrt{7}}{2}x)e^{\frac{1}{2}x} y=(C1cos27x+C2sin2
高数习题9.5
最新推荐文章于 2022-12-04 21:02:57 发布
本文详细解答了一系列常微分方程,包括通解的计算和初值问题的解决,还探讨了利用待定系数法寻找特殊解的方法,并给出了不同类型的微分方程特解形式的一般表达式。
摘要由CSDN通过智能技术生成