- 求下列级数的收敛域:
(1) ∑ n = 1 ∞ ( l n x ) n ; \sum_{n=1}^\infty(lnx)^n; ∑n=1∞(lnx)n; (2) ∑ n = 1 ∞ 1 2 n − 1 ( 1 − x 1 + x ) n ; \sum_{n=1}^\infty\frac{1}{2n-1}(\frac{1-x}{1+x})^n; ∑n=1∞2n−11(1+x1−x)n; (3) ∑ n = 1 ∞ 1 x n s i n π 3 n \sum_{n=1}^\infty\frac{1}{x^n}sin\frac{\pi}{3^n} ∑n=1∞xn1sin3nπ
解:
(1) 当且仅当 ∣ l n x ∣ < 1 |lnx|<1 ∣lnx∣<1时,级数收敛,即收敛域为 x ∈ ( e − 1 , e ) x\in(e^{-1},e) x∈(e−1,e)
(2) 当且仅当 1 − x 1 + x ∈ [ − 1 , 1 ) \frac{1-x}{1+x}\in[-1,1) 1+x1−x∈[−1,1)时,级数收敛,即收敛域为 x ∈ ( 0 , + ∞ ) x\in(0,+\infty) x∈(0,+∞)
(3) 当 ∣ x ∣ ≤ 1 3 |x|\leq\frac{1}{3} ∣x∣≤31时, lim n → ∞ 1 x n s i n π 3 n ≠ 0 \lim_{n\to\infty}\frac{1}{x^n}sin\frac{\pi}{3^n}\neq0 limn→∞xn1sin3nπ=0,此时函数发散。当 ∣ x ∣ > 1 3 |x|>\frac{1}{3} ∣x∣>31时, ∣ 1 x n s i n π 3 n ∣ < π ∣ 3 x ∣ n |\frac{1}{x^n}sin\frac{\pi}{3^n}|<\frac{\pi}{|3x|^n} ∣xn1sin3nπ∣<∣3x∣nπ,因为级数 ∑ n = 1 ∞ π ∣ 3 x ∣ n \sum_{n=1}^\infty\frac{\pi}{|3x|^n} ∑n=1∞∣3x∣nπ收敛,所以级数 ∑ n = 1 ∞ 1 x n s i n π 3 n \sum_{n=1}^\infty\frac{1}{x^n}sin\frac{\pi}{3^n} ∑n=1∞xn1sin3nπ收敛。所以收敛域为 x ∈ ( − ∞ , − 1 3 ) ⋃ ( 1 3 , + ∞ ) x\in(-\infty,-\frac{1}{3})\bigcup(\frac{1}{3},+\infty) x∈(−∞,−31)⋃(31,+∞) - 讨论下列函数序列在所示区间内的一致收敛性:
(1) f n ( x ) = 1 2 n + x 2 , − ∞ < x < + ∞ ; f_n(x)=\frac{1}{2^n+x^2},-\infty<x<+\infty; fn(x)=2n+x21,−∞<x<+∞;
(2) f n ( x ) = x 4 + e − n , − ∞ < x < + ∞ ; f_n(x)=\sqrt{x^4+e^{-n}},-\infty<x<+\infty; fn(x)=x4+e−n,−∞<x<+∞;
(3) f n ( x ) = l n ( 1 + x 2 n 2 ) , ( a ) − l < x < l , ( b ) − ∞ < x < + ∞ ; f_n(x)=ln(1+\frac{x^2}{n^2}),(a)-l<x<l,(b)-\infty<x<+\infty; fn(x)=ln(1+n2x2),(a)−l<x<l,(b)−∞<x<+∞;
(4) f n ( x ) = n 2 x 1 + n 2 x , 0 < x < 1 ; f_n(x)=\frac{n^2x}{1+n^2x},0<x<1; fn(x)=1+n2xn2x,0<x<1;
(5) f n ( x ) = s i n x n 3 + x n , ( a ) 0 ≤ x ≤ 1 − δ ( 0 < δ < 1 ) , ( b ) 0 < x < 1 ; f_n(x)=\frac{sinx^n}{3+x^n},(a)0\leq x\leq1-\delta(0<\delta<1),(b)0<x<1; fn(x)=3+xnsinxn,(a)0≤x≤1−δ(0<δ<1),(b)0<x<1;
(6) f n ( x ) = s i n x n x n , 0 < x < 1 ; f_n(x)=\frac{sin\frac{x}{n}}{\frac{x}{n}},0<x<1; fn(x)=nxsinnx,0<x<1;
解:
(1) lim n → ∞ 1 2 n + x 2 = 0 \lim_{n\to\infty}\frac{1}{2^n+x^2}=0 limn→∞2n+x21=0,因为 ∣ f n ( x ) − 0 ∣ ≤ 1 2 n |f_n(x)-0|\leq\frac{1}{2^n} ∣fn(x)−0∣≤2n1且 lim n → ∞ 1 2 n = 0 \lim_{n\to\infty}\frac{1}{2^n}=0 limn→∞2n1=0,所以函数序列一致收敛于0
(2) lim n → ∞ x 4 + e − n = x 2 \lim_{n\to\infty}\sqrt{x^4+e^{-n}}=x^2 limn→∞x4+e−n=x2,因为 ∣ f n ( x ) − x 2 ∣ = e − n x 4 + e − n + x 2 ≤ e − n e − n = e − n 2 |f_n(x)-x^2|=\frac{e^{-n}}{\sqrt{x^4+e^{-n}}+x^2}\leq\frac{e^{-n}}{\sqrt{e^{-n}}}=e^{-\frac{n}{2}} ∣fn(x)−x2∣=x4+e−n+x2e−n≤e−ne−n=e−2n且 lim n → ∞ e − n 2 = 0 \lim_{n\to\infty}e^{-\frac{n}{2}}=0 limn→∞e−2n=0,所以函数序列一致收敛于 x 2 x^2 x2
(3) lim n → ∞ l n ( 1 + x 2 n 2 ) = 0 \lim_{n\to\infty}ln(1+\frac{x^2}{n^2})=0 limn→∞ln(1+n2x2)=0
(a) 因为 ∣ f n ( x ) − 0 ∣ ≤ x 2 n 2 ≤ l 2 n 2 |f_n(x)-0|\leq\frac{x^2}{n^2}\leq\frac{l^2}{n^2} ∣fn(x)−0∣≤n2x2≤n2l2且 lim n → ∞ l 2 n 2 = 0 \lim_{n\to\infty}\frac{l^2}{n^2}=0 limn→∞n2l2=0,所以函数序列一致收敛于0
(b) 取 x n = n x_n=n xn=n,则 lim n → ∞ [ f n ( x ) − 0 ] = l n 2 \lim_{n\to\infty}[f_n(x)-0]=ln2 limn→∞[fn(x)−0]=ln2,所以函数序列不一致收敛
(4) lim n → ∞ n 2 x 1 + n 2 x = 1 \lim_{n\to\infty}\frac{n^2x}{1+n^2x}=1 limn→∞1+n2xn2x=1,取 x n = 1 n 2 x_n=\frac{1}{n^2} xn=n21,则 lim n → ∞ [ f n ( x ) − 1 ] = − 1 2 \lim_{n\to\infty}[f_n(x)-1]=-\frac{1}{2} limn→∞[fn(x)−1]=−21,所以函数序列不一致收敛
(5) lim n → ∞ s i n x n 3 + x n = 0 \lim_{n\to\infty}\frac{sinx^n}{3+x^n}=0 limn→∞3+xnsinxn=0
(a) 因为 ∣ f n ( x ) − 0 ∣ ≤ x n 3 + x n ≤ ( 1 − δ ) n 3 + ( 1 − δ ) n |f_n(x)-0|\leq\frac{x^n}{3+x^n}\leq\frac{(1-\delta)^n}{3+(1-\delta)^n} ∣fn(x)−0∣≤3+xnxn≤3+(1−δ)n(1−δ)n且 lim n → ∞ ( 1 − δ ) n 3 + ( 1 − δ ) n = 0 \lim_{n\to\infty}\frac{(1-\delta)^n}{3+(1-\delta)^n}=0 limn→∞3+(1−δ)n(1−δ)n=0,所以函数序列一致收敛于0
(b) 取 x n = n − 1 n n x_n=\sqrt[n]{\frac{n-1}{n}} xn=nnn−1,则 lim n → ∞ [ f n ( x ) − 0 ] = s i n 1 4 \lim_{n\to\infty}[f_n(x)-0]=\frac{sin1}{4} limn→∞[fn(x)−0]=4sin1,所以函数序列不一致收敛
(6) lim n → ∞ s i n x n x n = 1 \lim_{n\to\infty}\frac{sin\frac{x}{n}}{\frac{x}{n}}=1 limn→∞nxsinnx=1,因为 lim n → ∞ s i n x n x n = 1 \lim_{n\to\infty}\frac{sin\frac{x}{n}}{\frac{x}{n}}=1 limn→∞nxsinnx=1,所以对 ∀ ε > 0 , ∃ N , 当 n > N 时 , ∣ s i n x n x n − 1 ∣ < ε \forall\varepsilon>0,\exist N,当n>N时,|\frac{sin\frac{x}{n}}{\frac{x}{n}}-1|<\varepsilon ∀ε>0,∃N,当n>N时,∣nxsinnx−1∣<ε,而 ∣ f n ( x ) − 1 ∣ = ∣ s i n x n x n − 1 ∣ < ε |f_n(x)-1|=|\frac{sin\frac{x}{n}}{\frac{x}{n}}-1|<\varepsilon ∣fn(x)−1∣=∣nxsinnx−1∣<ε,所以函数序列一致收敛于1 - 讨论下列函数序列在所示区间内的一致收敛性:
(1) ∑ n = 1 ∞ ( − 1 ) n n x 2 + n 2 , − ∞ < x < + ∞ ; \sum_{n=1}^\infty(-1)^n\frac{\sqrt{n}}{x^2+n^2},-\infty<x<+\infty; ∑n=1∞(−1)nx2+n2n,−∞<x<+∞;
(2) ∑ n = 1 ∞ ( x n n − x n + 1 n + 1 ) , − 1 ≤ x ≤ 1 ; \sum_{n=1}^\infty(\frac{x^n}{n}-\frac{x^{n+1}}{n+1}),-1\leq x\leq1; ∑n=1∞(nxn−n+1xn+1),−1≤x≤1;
(3) ∑ n = 1 ∞ s i n n x 1 + ( x 2 + n 2 ) 3 , − ∞ < x < + ∞ ; \sum_{n=1}^\infty\frac{sinnx}{\sqrt{1+(x^2+n^2)^3}},-\infty<x<+\infty; ∑n=1∞1+(x2+n2)3sinnx,−∞<x<+∞;
(4) ∑ n = 1 ∞ x 1 + 4 n 4 x 2 , − ∞ < x < + ∞ ; \sum_{n=1}^\infty\frac{x}{1+4n^4x^2},-\infty<x<+\infty; ∑n=1∞1+4n4x2x,−∞<x<+∞;
(5) ∑ n = 1 ∞ x 2 ( 1 + x ) n , 0 < x < + ∞ ; \sum_{n=1}^\infty\frac{x^2}{(1+x)^n},0<x<+\infty; ∑n=1∞(1+x)nx2,0<x<+∞;
(6) ∑ n = 1 ∞ s i n x ⋅ s i n n x n 2 + x 2 , 0 ≤ x ≤ 2 π ; \sum_{n=1}^\infty\frac{sinx\cdot sinnx}{\sqrt{n^2+x^2}},0\leq x\leq2\pi; ∑n=1∞n2+x2sinx⋅sinnx,0≤x≤2π;
(7) ∑ n = 1 ∞ ( − 1 ) n − 1 x 2 e − n x 2 , − ∞ < x < + ∞ ; \sum_{n=1}^\infty(-1)^{n-1}x^2e^{-nx^2},-\infty<x<+\infty; ∑n=1∞(−1)n−1x2e−nx2,−∞<x<+∞;
解:
(1) ∣ ( − 1 ) n n x 2 + n 2 ∣ ≤ n n 2 = 1 n 3 2 |(-1)^n\frac{\sqrt{n}}{x^2+n^2}|\leq\frac{\sqrt{n}}{n^2}=\frac{1}{n^{\frac{3}{2}}} ∣(−1)nx2+n2n∣≤n2n=n231,因为级数 ∑ n = 1 ∞ 1 n 3 2 \sum_{n=1}^\infty\frac{1}{n^{\frac{3}{2}}} ∑n=1∞n231收敛,所以函数序列一致收敛
(2) ∣ ∑ k = n + 1 ∞ ( x k k − x k + 1 k + 1 ) ∣ = ∣ x n + 1 n + 1 ∣ ≤ 1 n |\sum_{k=n+1}^\infty(\frac{x^k}{k}-\frac{x^{k+1}}{k+1})|=|\frac{x^{n+1}}{n+1}|\leq\frac{1}{n} ∣∑k=n+1∞(kxk−k+1xk+1)∣=∣n+1xn+1∣≤n1,因为 lim n → ∞ 1 n = 0 \lim_{n\to\infty}\frac{1}{n}=0 limn→∞n1=0,所以函数序列一致收敛
(3) ∣ s i n n x 1 + ( x 2 + n 2 ) 3 ∣ ≤ 1 n 3 |\frac{sinnx}{\sqrt{1+(x^2+n^2)^3}}|\leq\frac{1}{n^3} ∣1+(x2+n2)3sinnx∣≤n31,因为级数 ∑ n = 1 ∞ 1 n 3 \sum_{n=1}^\infty\frac{1}{n^3} ∑n=1∞n31收敛,所以函数序列一致收敛
(4) ∣ x 1 + 4 n 4 x 2 ∣ ≤ 1 4 n 2 |\frac{x}{1+4n^4x^2}|\leq\frac{1}{4n^2} ∣1+4n4x2x∣≤4n21,因为级数 ∑ n = 1 ∞ 1 4 n 2 \sum_{n=1}^\infty\frac{1}{4n^2} ∑n=1∞4n21收敛,所以函数序列一致收敛
(5) ∑ k = n + 1 ∞ x 2 ( 1 + x ) k = x ( 1 + x ) n ≤ x 1 + n x ≤ 1 n \sum_{k=n+1}^\infty\frac{x^2}{(1+x)^k}=\frac{x}{(1+x)^n}\leq\frac{x}{1+nx}\leq\frac{1}{n} ∑k=n+1∞(1+x)kx2=(1+x)nx≤1+nxx≤n1,因为 lim n → ∞ 1 n = 0 \lim_{n\to\infty}\frac{1}{n}=0 limn→∞n1=0,所以函数序列一致收敛
(6) 1 n 2 + x 2 ≤ 1 n \frac{1}{\sqrt{n^2+x^2}}\leq\frac{1}{n} n2+x21≤n1,因为 lim n → ∞ 1 n = 0 \lim_{n\to\infty}\frac{1}{n}=0 limn→∞n1=0,所以函数序列 { 1 n 2 + x 2 } \{\frac{1}{\sqrt{n^2+x^2}}\} {n2+x21}一致收敛于0,因为 1 n 2 + x 2 \frac{1}{\sqrt{n^2+x^2}} n2+x21关于n单调,并且 ∣ ∑ k = 1 n s i n x ⋅ s i n k x ∣ = ∣ c o s x 2 ⋅ [ c o s x 2 − c o s ( n + 1 2 ) x ] ∣ ≤ 2 |\sum_{k=1}^nsinx\cdot sinkx|=|cos\frac{x}{2}\cdot[cos\frac{x}{2}-cos(n+\frac{1}{2})x]|\leq2 ∣∑k=1nsinx⋅sinkx∣=∣cos2x⋅[cos2x−cos(n+21)x]∣≤2,所以函数序列一致收敛
(7) ∣ ∑ k = n + 1 ∞ ( − 1 ) k − 1 x 2 e − k x 2 ∣ = x 2 e − n x 2 e x 2 + 1 ≤ x 2 e − n x 2 = x 2 e ⋅ e n x 2 − 1 ≤ 1 e n |\sum_{k=n+1}^\infty(-1)^{k-1}x^2e^{-kx^2}|=\frac{x^2e^{-nx^2}}{e^{x^2}+1}\leq x^2e^{-nx^2}=\frac{x^2}{e\cdot e^{nx^2-1}}\leq\frac{1}{en} ∣∑k=n+1∞(−1)k−1x2e−kx2∣=ex2+1x2e−nx2≤x2e−nx2=e⋅enx2−1x2≤en1,因为 lim n → ∞ 1 e n = 0 \lim_{n\to\infty}\frac{1}{en}=0 limn→∞en1=0,所以函数序列一致收敛 - 证明级数
f
(
x
)
=
∑
n
=
1
∞
3
−
n
s
i
n
2
n
x
f(x)=\sum_{n=1}^\infty3^{-n}sin2^nx
f(x)=∑n=1∞3−nsin2nx在
(
−
∞
,
+
∞
)
(-\infty,+\infty)
(−∞,+∞)中一致收敛,且有连续的导函数
证明:
∣ 3 − n s i n 2 n x ∣ ≤ 3 − n |3^{-n}sin2^nx|\leq3^{-n} ∣3−nsin2nx∣≤3−n,因为级数 ∑ n = 1 ∞ 3 − n \sum_{n=1}^\infty3^{-n} ∑n=1∞3−n收敛,所以函数序列一致收敛
∣ f ′ ( x ) ∣ = ∣ ( 2 3 ) n c o s 2 n x ∣ ≤ ( 2 3 ) n |f'(x)|=|(\frac{2}{3})^ncos2^nx|\leq(\frac{2}{3})^n ∣f′(x)∣=∣(32)ncos2nx∣≤(32)n,因为级数 ∑ n = 1 ∞ ( 2 3 ) n \sum_{n=1}^\infty(\frac{2}{3})^n ∑n=1∞(32)n收敛,所以函数序列 f ′ ( x ) f'(x) f′(x)一致收敛,所以有连续的导函数 - 证明级数
g
(
x
)
=
∑
n
=
1
∞
2
n
s
i
n
x
3
n
g(x)=\sum_{n=1}^\infty2^nsin\frac{x}{3^n}
g(x)=∑n=1∞2nsin3nx在
(
−
∞
,
+
∞
)
(-\infty,+\infty)
(−∞,+∞)中不一致收敛,但在任意闭区间
[
−
M
,
M
]
(
M
>
0
)
[-M,M](M>0)
[−M,M](M>0)上一致收敛,并证明
g
(
x
)
g(x)
g(x)在
(
−
∞
,
+
∞
)
(-\infty,+\infty)
(−∞,+∞)中有连续的导函数
证明:
取 x n = 3 n + 1 x_n=3^{n+1} xn=3n+1,则 ∣ ∑ k = n + 1 ∞ 2 k s i n 3 n + 1 3 k ∣ ≥ 2 n + 1 s i n 1 > s i n 1 |\sum_{k=n+1}^\infty2^ksin\frac{3^{n+1}}{3^k}|\geq2^{n+1}sin1>sin1 ∣∑k=n+1∞2ksin3k3n+1∣≥2n+1sin1>sin1,所以函数序列不一致收敛
当 x ∈ [ − M , M ] x\in[-M,M] x∈[−M,M]时, ∣ 2 n s i n x 3 n ∣ ≤ ∣ 2 n x 3 n ∣ ≤ M ( 2 3 ) n |2^nsin\frac{x}{3^n}|\leq|2^n\frac{x}{3^n}|\leq M(\frac{2}{3})^n ∣2nsin3nx∣≤∣2n3nx∣≤M(32)n,因为级数 ∑ n = 1 ∞ M ( 2 3 ) n \sum_{n=1}^\infty M(\frac{2}{3})^n ∑n=1∞M(32)n收敛,所以函数序列一致收敛
∣ g ′ ( x ) ∣ = ∣ ( 2 3 ) n c o s x 3 n ∣ ≤ ( 2 3 ) n |g'(x)|=|(\frac{2}{3})^ncos\frac{x}{3^n}|\leq(\frac{2}{3})^n ∣g′(x)∣=∣(32)ncos3nx∣≤(32)n,因为级数 ∑ n = 1 ∞ ( 2 3 ) n \sum_{n=1}^\infty(\frac{2}{3})^n ∑n=1∞(32)n收敛,所以函数序列 g ′ ( x ) g'(x) g′(x)一致收敛,所以有连续的导函数 - 证明级数
ζ
(
x
)
=
∑
n
=
1
∞
1
n
x
\zeta(x)=\sum_{n=1}^\infty\frac{1}{n^x}
ζ(x)=∑n=1∞nx1在任何区间
[
1
+
δ
,
+
∞
)
[1+\delta,+\infty)
[1+δ,+∞)中一致收敛
(
δ
>
0
)
(\delta>0)
(δ>0),并证明级数
∑
n
=
1
∞
l
n
n
n
x
\sum_{n=1}^\infty\frac{lnn}{n^x}
∑n=1∞nxlnn在任何区间
[
1
+
δ
,
+
∞
)
[1+\delta,+\infty)
[1+δ,+∞)中一致收敛
(
δ
>
0
)
(\delta>0)
(δ>0),从而导致函数
ζ
(
x
)
\zeta(x)
ζ(x)在
(
1
,
+
∞
)
(1,+\infty)
(1,+∞)中有连续的导函数
ζ
′
(
x
)
\zeta'(x)
ζ′(x)
证明:
当 x ∈ [ 1 + δ , + ∞ ) x\in[1+\delta,+\infty) x∈[1+δ,+∞)时, 1 n x ≤ 1 n 1 + δ \frac{1}{n^x}\leq\frac{1}{n^{1+\delta}} nx1≤n1+δ1,因为级数 ∑ n = 1 ∞ 1 n 1 + δ \sum_{n=1}^\infty\frac{1}{n^{1+\delta}} ∑n=1∞n1+δ1收敛,所以函数序列一致收敛
因为 lim n → ∞ l n n n δ 2 = 0 \lim_{n\to\infty}\frac{lnn}{n^{\frac{\delta}{2}}}=0 limn→∞n2δlnn=0,所以 ∃ M > 0 \exist M>0 ∃M>0,使得 l n n n δ 2 < M \frac{lnn}{n^{\frac{\delta}{2}}}<M n2δlnn<M,当 x ∈ [ 1 + δ , + ∞ ) x\in[1+\delta,+\infty) x∈[1+δ,+∞)时, l n n n x ≤ l n n n 1 + δ ≤ M n 1 + δ 2 \frac{lnn}{n^x}\leq\frac{lnn}{n^{1+\delta}}\leq\frac{M}{n^{1+\frac{\delta}{2}}} nxlnn≤n1+δlnn≤n1+2δM,因为级数 ∑ n = 1 ∞ M n 1 + δ 2 \sum_{n=1}^\infty\frac{M}{n^{1+\frac{\delta}{2}}} ∑n=1∞n1+2δM收敛,所以函数序列一致收敛
∣ ζ ′ ( x ) ∣ = ∣ ∑ n = 1 ∞ − l n n n x ∣ |\zeta'(x)|=|\sum_{n=1}^\infty\frac{-lnn}{n^x}| ∣ζ′(x)∣=∣∑n=1∞nx−lnn∣,因为级数 ∑ n = 1 ∞ l n n n x \sum_{n=1}^\infty\frac{lnn}{n^x} ∑n=1∞nxlnn在任何区间 [ 1 + δ , + ∞ ) [1+\delta,+\infty) [1+δ,+∞)中一致收敛,所以函数 ζ ( x ) \zeta(x) ζ(x)在 ( 1 , + ∞ ) (1,+\infty) (1,+∞)中有连续的导函数 ζ ′ ( x ) \zeta'(x) ζ′(x) - 设
p
>
0
p>0
p>0,证明函数
f
(
x
)
=
∑
n
=
1
∞
s
i
n
n
x
n
2
+
p
f(x)=\sum_{n=1}^\infty\frac{sinnx}{n^{2+p}}
f(x)=∑n=1∞n2+psinnx在
(
−
∞
,
+
∞
)
(-\infty,+\infty)
(−∞,+∞)中有连续的导函数
证明:
∣ f ′ ( x ) ∣ = ∣ ∑ n = 1 ∞ c o s n x n 1 + p ∣ ≤ ∑ n = 1 ∞ 1 n 1 + p |f'(x)|=|\sum_{n=1}^\infty\frac{cosnx}{n^{1+p}}|\leq\sum_{n=1}^\infty\frac{1}{n^{1+p}} ∣f′(x)∣=∣∑n=1∞n1+pcosnx∣≤∑n=1∞n1+p1,因为级数 ∑ n = 1 ∞ 1 n 1 + p \sum_{n=1}^\infty\frac{1}{n^{1+p}} ∑n=1∞n1+p1收敛,所以函数序列 f ′ ( x ) f'(x) f′(x)一致收敛,所以有连续的导函数 - 设
∑
n
=
1
∞
a
n
\sum_{n=1}^\infty a_n
∑n=1∞an收敛。证明级数
∑
n
=
1
∞
a
n
n
x
\sum_{n=1}^\infty\frac{a_n}{n^x}
∑n=1∞nxan在
[
0
,
+
∞
)
[0,+\infty)
[0,+∞)中一致收敛,并有
lim
x
→
0
+
0
∑
n
=
1
∞
a
n
n
x
=
∑
n
=
1
∞
a
n
\lim_{x\to0+0}\sum_{n=1}^\infty\frac{a_n}{n^x}=\sum_{n=1}^\infty a_n
limx→0+0∑n=1∞nxan=∑n=1∞an
证明:
当 x ∈ [ 0 , + ∞ ) x\in[0,+\infty) x∈[0,+∞)时, 1 n x \frac{1}{n^x} nx1关于n单调,而且 1 n x ≤ 1 \frac{1}{n^x}\leq1 nx1≤1,因为 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n ∑n=1∞an收敛,所以级数 ∑ n = 1 ∞ a n n x \sum_{n=1}^\infty\frac{a_n}{n^x} ∑n=1∞nxan在 [ 0 , + ∞ ) [0,+\infty) [0,+∞)中一致收敛,而且 lim x → 0 + 0 ∑ n = 1 ∞ a n n x = ∑ n = 1 ∞ lim x → 0 + 0 a n n x = ∑ n = 1 ∞ a n \lim_{x\to0+0}\sum_{n=1}^\infty\frac{a_n}{n^x}=\sum_{n=1}^\infty\lim_{x\to0+0}\frac{a_n}{n^x}=\sum_{n=1}^\infty a_n limx→0+0∑n=1∞nxan=∑n=1∞limx→0+0nxan=∑n=1∞an
高数习题10.4
最新推荐文章于 2022-12-01 14:46:14 发布