高数习题10.4

  1. 求下列级数的收敛域:
    (1) ∑ n = 1 ∞ ( l n x ) n ; \sum_{n=1}^\infty(lnx)^n; n=1(lnx)n; (2) ∑ n = 1 ∞ 1 2 n − 1 ( 1 − x 1 + x ) n ; \sum_{n=1}^\infty\frac{1}{2n-1}(\frac{1-x}{1+x})^n; n=12n11(1+x1x)n; (3) ∑ n = 1 ∞ 1 x n s i n π 3 n \sum_{n=1}^\infty\frac{1}{x^n}sin\frac{\pi}{3^n} n=1xn1sin3nπ
    解:
    (1) 当且仅当 ∣ l n x ∣ < 1 |lnx|<1 lnx<1时,级数收敛,即收敛域为 x ∈ ( e − 1 , e ) x\in(e^{-1},e) x(e1,e)
    (2) 当且仅当 1 − x 1 + x ∈ [ − 1 , 1 ) \frac{1-x}{1+x}\in[-1,1) 1+x1x[1,1)时,级数收敛,即收敛域为 x ∈ ( 0 , + ∞ ) x\in(0,+\infty) x(0,+)
    (3) 当 ∣ x ∣ ≤ 1 3 |x|\leq\frac{1}{3} x31时, lim ⁡ n → ∞ 1 x n s i n π 3 n ≠ 0 \lim_{n\to\infty}\frac{1}{x^n}sin\frac{\pi}{3^n}\neq0 limnxn1sin3nπ=0,此时函数发散。当 ∣ x ∣ > 1 3 |x|>\frac{1}{3} x>31时, ∣ 1 x n s i n π 3 n ∣ < π ∣ 3 x ∣ n |\frac{1}{x^n}sin\frac{\pi}{3^n}|<\frac{\pi}{|3x|^n} xn1sin3nπ<3xnπ,因为级数 ∑ n = 1 ∞ π ∣ 3 x ∣ n \sum_{n=1}^\infty\frac{\pi}{|3x|^n} n=13xnπ收敛,所以级数 ∑ n = 1 ∞ 1 x n s i n π 3 n \sum_{n=1}^\infty\frac{1}{x^n}sin\frac{\pi}{3^n} n=1xn1sin3nπ收敛。所以收敛域为 x ∈ ( − ∞ , − 1 3 ) ⋃ ( 1 3 , + ∞ ) x\in(-\infty,-\frac{1}{3})\bigcup(\frac{1}{3},+\infty) x(,31)(31,+)
  2. 讨论下列函数序列在所示区间内的一致收敛性:
    (1) f n ( x ) = 1 2 n + x 2 , − ∞ < x < + ∞ ; f_n(x)=\frac{1}{2^n+x^2},-\infty<x<+\infty; fn(x)=2n+x21,<x<+;
    (2) f n ( x ) = x 4 + e − n , − ∞ < x < + ∞ ; f_n(x)=\sqrt{x^4+e^{-n}},-\infty<x<+\infty; fn(x)=x4+en ,<x<+;
    (3) f n ( x ) = l n ( 1 + x 2 n 2 ) , ( a ) − l < x < l , ( b ) − ∞ < x < + ∞ ; f_n(x)=ln(1+\frac{x^2}{n^2}),(a)-l<x<l,(b)-\infty<x<+\infty; fn(x)=ln(1+n2x2),(a)l<x<l,(b)<x<+;
    (4) f n ( x ) = n 2 x 1 + n 2 x , 0 < x < 1 ; f_n(x)=\frac{n^2x}{1+n^2x},0<x<1; fn(x)=1+n2xn2x,0<x<1;
    (5) f n ( x ) = s i n x n 3 + x n , ( a ) 0 ≤ x ≤ 1 − δ ( 0 < δ < 1 ) , ( b ) 0 < x < 1 ; f_n(x)=\frac{sinx^n}{3+x^n},(a)0\leq x\leq1-\delta(0<\delta<1),(b)0<x<1; fn(x)=3+xnsinxn,(a)0x1δ(0<δ<1),(b)0<x<1;
    (6) f n ( x ) = s i n x n x n , 0 < x < 1 ; f_n(x)=\frac{sin\frac{x}{n}}{\frac{x}{n}},0<x<1; fn(x)=nxsinnx,0<x<1;
    解:
    (1) lim ⁡ n → ∞ 1 2 n + x 2 = 0 \lim_{n\to\infty}\frac{1}{2^n+x^2}=0 limn2n+x21=0,因为 ∣ f n ( x ) − 0 ∣ ≤ 1 2 n |f_n(x)-0|\leq\frac{1}{2^n} fn(x)02n1 lim ⁡ n → ∞ 1 2 n = 0 \lim_{n\to\infty}\frac{1}{2^n}=0 limn2n1=0,所以函数序列一致收敛于0
    (2) lim ⁡ n → ∞ x 4 + e − n = x 2 \lim_{n\to\infty}\sqrt{x^4+e^{-n}}=x^2 limnx4+en =x2,因为 ∣ f n ( x ) − x 2 ∣ = e − n x 4 + e − n + x 2 ≤ e − n e − n = e − n 2 |f_n(x)-x^2|=\frac{e^{-n}}{\sqrt{x^4+e^{-n}}+x^2}\leq\frac{e^{-n}}{\sqrt{e^{-n}}}=e^{-\frac{n}{2}} fn(x)x2=x4+en +x2enen en=e2n lim ⁡ n → ∞ e − n 2 = 0 \lim_{n\to\infty}e^{-\frac{n}{2}}=0 limne2n=0,所以函数序列一致收敛于 x 2 x^2 x2
    (3) lim ⁡ n → ∞ l n ( 1 + x 2 n 2 ) = 0 \lim_{n\to\infty}ln(1+\frac{x^2}{n^2})=0 limnln(1+n2x2)=0
    (a) 因为 ∣ f n ( x ) − 0 ∣ ≤ x 2 n 2 ≤ l 2 n 2 |f_n(x)-0|\leq\frac{x^2}{n^2}\leq\frac{l^2}{n^2} fn(x)0n2x2n2l2 lim ⁡ n → ∞ l 2 n 2 = 0 \lim_{n\to\infty}\frac{l^2}{n^2}=0 limnn2l2=0,所以函数序列一致收敛于0
    (b) 取 x n = n x_n=n xn=n,则 lim ⁡ n → ∞ [ f n ( x ) − 0 ] = l n 2 \lim_{n\to\infty}[f_n(x)-0]=ln2 limn[fn(x)0]=ln2,所以函数序列不一致收敛
    (4) lim ⁡ n → ∞ n 2 x 1 + n 2 x = 1 \lim_{n\to\infty}\frac{n^2x}{1+n^2x}=1 limn1+n2xn2x=1,取 x n = 1 n 2 x_n=\frac{1}{n^2} xn=n21,则 lim ⁡ n → ∞ [ f n ( x ) − 1 ] = − 1 2 \lim_{n\to\infty}[f_n(x)-1]=-\frac{1}{2} limn[fn(x)1]=21,所以函数序列不一致收敛
    (5) lim ⁡ n → ∞ s i n x n 3 + x n = 0 \lim_{n\to\infty}\frac{sinx^n}{3+x^n}=0 limn3+xnsinxn=0
    (a) 因为 ∣ f n ( x ) − 0 ∣ ≤ x n 3 + x n ≤ ( 1 − δ ) n 3 + ( 1 − δ ) n |f_n(x)-0|\leq\frac{x^n}{3+x^n}\leq\frac{(1-\delta)^n}{3+(1-\delta)^n} fn(x)03+xnxn3+(1δ)n(1δ)n lim ⁡ n → ∞ ( 1 − δ ) n 3 + ( 1 − δ ) n = 0 \lim_{n\to\infty}\frac{(1-\delta)^n}{3+(1-\delta)^n}=0 limn3+(1δ)n(1δ)n=0,所以函数序列一致收敛于0
    (b) 取 x n = n − 1 n n x_n=\sqrt[n]{\frac{n-1}{n}} xn=nnn1 ,则 lim ⁡ n → ∞ [ f n ( x ) − 0 ] = s i n 1 4 \lim_{n\to\infty}[f_n(x)-0]=\frac{sin1}{4} limn[fn(x)0]=4sin1,所以函数序列不一致收敛
    (6) lim ⁡ n → ∞ s i n x n x n = 1 \lim_{n\to\infty}\frac{sin\frac{x}{n}}{\frac{x}{n}}=1 limnnxsinnx=1,因为 lim ⁡ n → ∞ s i n x n x n = 1 \lim_{n\to\infty}\frac{sin\frac{x}{n}}{\frac{x}{n}}=1 limnnxsinnx=1,所以对 ∀ ε > 0 , ∃ N , 当 n > N 时 , ∣ s i n x n x n − 1 ∣ < ε \forall\varepsilon>0,\exist N,当n>N时,|\frac{sin\frac{x}{n}}{\frac{x}{n}}-1|<\varepsilon ε>0,N,n>N,nxsinnx1<ε,而 ∣ f n ( x ) − 1 ∣ = ∣ s i n x n x n − 1 ∣ < ε |f_n(x)-1|=|\frac{sin\frac{x}{n}}{\frac{x}{n}}-1|<\varepsilon fn(x)1=nxsinnx1<ε,所以函数序列一致收敛于1
  3. 讨论下列函数序列在所示区间内的一致收敛性:
    (1) ∑ n = 1 ∞ ( − 1 ) n n x 2 + n 2 , − ∞ < x < + ∞ ; \sum_{n=1}^\infty(-1)^n\frac{\sqrt{n}}{x^2+n^2},-\infty<x<+\infty; n=1(1)nx2+n2n ,<x<+;
    (2) ∑ n = 1 ∞ ( x n n − x n + 1 n + 1 ) , − 1 ≤ x ≤ 1 ; \sum_{n=1}^\infty(\frac{x^n}{n}-\frac{x^{n+1}}{n+1}),-1\leq x\leq1; n=1(nxnn+1xn+1),1x1;
    (3) ∑ n = 1 ∞ s i n n x 1 + ( x 2 + n 2 ) 3 , − ∞ < x < + ∞ ; \sum_{n=1}^\infty\frac{sinnx}{\sqrt{1+(x^2+n^2)^3}},-\infty<x<+\infty; n=11+(x2+n2)3 sinnx,<x<+;
    (4) ∑ n = 1 ∞ x 1 + 4 n 4 x 2 , − ∞ < x < + ∞ ; \sum_{n=1}^\infty\frac{x}{1+4n^4x^2},-\infty<x<+\infty; n=11+4n4x2x,<x<+;
    (5) ∑ n = 1 ∞ x 2 ( 1 + x ) n , 0 < x < + ∞ ; \sum_{n=1}^\infty\frac{x^2}{(1+x)^n},0<x<+\infty; n=1(1+x)nx2,0<x<+;
    (6) ∑ n = 1 ∞ s i n x ⋅ s i n n x n 2 + x 2 , 0 ≤ x ≤ 2 π ; \sum_{n=1}^\infty\frac{sinx\cdot sinnx}{\sqrt{n^2+x^2}},0\leq x\leq2\pi; n=1n2+x2 sinxsinnx,0x2π;
    (7) ∑ n = 1 ∞ ( − 1 ) n − 1 x 2 e − n x 2 , − ∞ < x < + ∞ ; \sum_{n=1}^\infty(-1)^{n-1}x^2e^{-nx^2},-\infty<x<+\infty; n=1(1)n1x2enx2,<x<+;
    解:
    (1) ∣ ( − 1 ) n n x 2 + n 2 ∣ ≤ n n 2 = 1 n 3 2 |(-1)^n\frac{\sqrt{n}}{x^2+n^2}|\leq\frac{\sqrt{n}}{n^2}=\frac{1}{n^{\frac{3}{2}}} (1)nx2+n2n n2n =n231,因为级数 ∑ n = 1 ∞ 1 n 3 2 \sum_{n=1}^\infty\frac{1}{n^{\frac{3}{2}}} n=1n231收敛,所以函数序列一致收敛
    (2) ∣ ∑ k = n + 1 ∞ ( x k k − x k + 1 k + 1 ) ∣ = ∣ x n + 1 n + 1 ∣ ≤ 1 n |\sum_{k=n+1}^\infty(\frac{x^k}{k}-\frac{x^{k+1}}{k+1})|=|\frac{x^{n+1}}{n+1}|\leq\frac{1}{n} k=n+1(kxkk+1xk+1)=n+1xn+1n1,因为 lim ⁡ n → ∞ 1 n = 0 \lim_{n\to\infty}\frac{1}{n}=0 limnn1=0,所以函数序列一致收敛
    (3) ∣ s i n n x 1 + ( x 2 + n 2 ) 3 ∣ ≤ 1 n 3 |\frac{sinnx}{\sqrt{1+(x^2+n^2)^3}}|\leq\frac{1}{n^3} 1+(x2+n2)3 sinnxn31,因为级数 ∑ n = 1 ∞ 1 n 3 \sum_{n=1}^\infty\frac{1}{n^3} n=1n31收敛,所以函数序列一致收敛
    (4) ∣ x 1 + 4 n 4 x 2 ∣ ≤ 1 4 n 2 |\frac{x}{1+4n^4x^2}|\leq\frac{1}{4n^2} 1+4n4x2x4n21,因为级数 ∑ n = 1 ∞ 1 4 n 2 \sum_{n=1}^\infty\frac{1}{4n^2} n=14n21收敛,所以函数序列一致收敛
    (5) ∑ k = n + 1 ∞ x 2 ( 1 + x ) k = x ( 1 + x ) n ≤ x 1 + n x ≤ 1 n \sum_{k=n+1}^\infty\frac{x^2}{(1+x)^k}=\frac{x}{(1+x)^n}\leq\frac{x}{1+nx}\leq\frac{1}{n} k=n+1(1+x)kx2=(1+x)nx1+nxxn1,因为 lim ⁡ n → ∞ 1 n = 0 \lim_{n\to\infty}\frac{1}{n}=0 limnn1=0,所以函数序列一致收敛
    (6) 1 n 2 + x 2 ≤ 1 n \frac{1}{\sqrt{n^2+x^2}}\leq\frac{1}{n} n2+x2 1n1,因为 lim ⁡ n → ∞ 1 n = 0 \lim_{n\to\infty}\frac{1}{n}=0 limnn1=0,所以函数序列 { 1 n 2 + x 2 } \{\frac{1}{\sqrt{n^2+x^2}}\} {n2+x2 1}一致收敛于0,因为 1 n 2 + x 2 \frac{1}{\sqrt{n^2+x^2}} n2+x2 1关于n单调,并且 ∣ ∑ k = 1 n s i n x ⋅ s i n k x ∣ = ∣ c o s x 2 ⋅ [ c o s x 2 − c o s ( n + 1 2 ) x ] ∣ ≤ 2 |\sum_{k=1}^nsinx\cdot sinkx|=|cos\frac{x}{2}\cdot[cos\frac{x}{2}-cos(n+\frac{1}{2})x]|\leq2 k=1nsinxsinkx=cos2x[cos2xcos(n+21)x]2,所以函数序列一致收敛
    (7) ∣ ∑ k = n + 1 ∞ ( − 1 ) k − 1 x 2 e − k x 2 ∣ = x 2 e − n x 2 e x 2 + 1 ≤ x 2 e − n x 2 = x 2 e ⋅ e n x 2 − 1 ≤ 1 e n |\sum_{k=n+1}^\infty(-1)^{k-1}x^2e^{-kx^2}|=\frac{x^2e^{-nx^2}}{e^{x^2}+1}\leq x^2e^{-nx^2}=\frac{x^2}{e\cdot e^{nx^2-1}}\leq\frac{1}{en} k=n+1(1)k1x2ekx2=ex2+1x2enx2x2enx2=eenx21x2en1,因为 lim ⁡ n → ∞ 1 e n = 0 \lim_{n\to\infty}\frac{1}{en}=0 limnen1=0,所以函数序列一致收敛
  4. 证明级数 f ( x ) = ∑ n = 1 ∞ 3 − n s i n 2 n x f(x)=\sum_{n=1}^\infty3^{-n}sin2^nx f(x)=n=13nsin2nx ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)中一致收敛,且有连续的导函数
    证明:
    ∣ 3 − n s i n 2 n x ∣ ≤ 3 − n |3^{-n}sin2^nx|\leq3^{-n} 3nsin2nx3n,因为级数 ∑ n = 1 ∞ 3 − n \sum_{n=1}^\infty3^{-n} n=13n收敛,所以函数序列一致收敛
    ∣ f ′ ( x ) ∣ = ∣ ( 2 3 ) n c o s 2 n x ∣ ≤ ( 2 3 ) n |f'(x)|=|(\frac{2}{3})^ncos2^nx|\leq(\frac{2}{3})^n f(x)=(32)ncos2nx(32)n,因为级数 ∑ n = 1 ∞ ( 2 3 ) n \sum_{n=1}^\infty(\frac{2}{3})^n n=1(32)n收敛,所以函数序列 f ′ ( x ) f'(x) f(x)一致收敛,所以有连续的导函数
  5. 证明级数 g ( x ) = ∑ n = 1 ∞ 2 n s i n x 3 n g(x)=\sum_{n=1}^\infty2^nsin\frac{x}{3^n} g(x)=n=12nsin3nx ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)中不一致收敛,但在任意闭区间 [ − M , M ] ( M > 0 ) [-M,M](M>0) [M,M](M>0)上一致收敛,并证明 g ( x ) g(x) g(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)中有连续的导函数
    证明:
    x n = 3 n + 1 x_n=3^{n+1} xn=3n+1,则 ∣ ∑ k = n + 1 ∞ 2 k s i n 3 n + 1 3 k ∣ ≥ 2 n + 1 s i n 1 > s i n 1 |\sum_{k=n+1}^\infty2^ksin\frac{3^{n+1}}{3^k}|\geq2^{n+1}sin1>sin1 k=n+12ksin3k3n+12n+1sin1>sin1,所以函数序列不一致收敛
    x ∈ [ − M , M ] x\in[-M,M] x[M,M]时, ∣ 2 n s i n x 3 n ∣ ≤ ∣ 2 n x 3 n ∣ ≤ M ( 2 3 ) n |2^nsin\frac{x}{3^n}|\leq|2^n\frac{x}{3^n}|\leq M(\frac{2}{3})^n 2nsin3nx2n3nxM(32)n,因为级数 ∑ n = 1 ∞ M ( 2 3 ) n \sum_{n=1}^\infty M(\frac{2}{3})^n n=1M(32)n收敛,所以函数序列一致收敛
    ∣ g ′ ( x ) ∣ = ∣ ( 2 3 ) n c o s x 3 n ∣ ≤ ( 2 3 ) n |g'(x)|=|(\frac{2}{3})^ncos\frac{x}{3^n}|\leq(\frac{2}{3})^n g(x)=(32)ncos3nx(32)n,因为级数 ∑ n = 1 ∞ ( 2 3 ) n \sum_{n=1}^\infty(\frac{2}{3})^n n=1(32)n收敛,所以函数序列 g ′ ( x ) g'(x) g(x)一致收敛,所以有连续的导函数
  6. 证明级数 ζ ( x ) = ∑ n = 1 ∞ 1 n x \zeta(x)=\sum_{n=1}^\infty\frac{1}{n^x} ζ(x)=n=1nx1在任何区间 [ 1 + δ , + ∞ ) [1+\delta,+\infty) [1+δ,+)中一致收敛 ( δ > 0 ) (\delta>0) (δ>0),并证明级数 ∑ n = 1 ∞ l n n n x \sum_{n=1}^\infty\frac{lnn}{n^x} n=1nxlnn在任何区间 [ 1 + δ , + ∞ ) [1+\delta,+\infty) [1+δ,+)中一致收敛 ( δ > 0 ) (\delta>0) (δ>0),从而导致函数 ζ ( x ) \zeta(x) ζ(x) ( 1 , + ∞ ) (1,+\infty) (1,+)中有连续的导函数 ζ ′ ( x ) \zeta'(x) ζ(x)
    证明:
    x ∈ [ 1 + δ , + ∞ ) x\in[1+\delta,+\infty) x[1+δ,+)时, 1 n x ≤ 1 n 1 + δ \frac{1}{n^x}\leq\frac{1}{n^{1+\delta}} nx1n1+δ1,因为级数 ∑ n = 1 ∞ 1 n 1 + δ \sum_{n=1}^\infty\frac{1}{n^{1+\delta}} n=1n1+δ1收敛,所以函数序列一致收敛
    因为 lim ⁡ n → ∞ l n n n δ 2 = 0 \lim_{n\to\infty}\frac{lnn}{n^{\frac{\delta}{2}}}=0 limnn2δlnn=0,所以 ∃ M > 0 \exist M>0 M>0,使得 l n n n δ 2 < M \frac{lnn}{n^{\frac{\delta}{2}}}<M n2δlnn<M,当 x ∈ [ 1 + δ , + ∞ ) x\in[1+\delta,+\infty) x[1+δ,+)时, l n n n x ≤ l n n n 1 + δ ≤ M n 1 + δ 2 \frac{lnn}{n^x}\leq\frac{lnn}{n^{1+\delta}}\leq\frac{M}{n^{1+\frac{\delta}{2}}} nxlnnn1+δlnnn1+2δM,因为级数 ∑ n = 1 ∞ M n 1 + δ 2 \sum_{n=1}^\infty\frac{M}{n^{1+\frac{\delta}{2}}} n=1n1+2δM收敛,所以函数序列一致收敛
    ∣ ζ ′ ( x ) ∣ = ∣ ∑ n = 1 ∞ − l n n n x ∣ |\zeta'(x)|=|\sum_{n=1}^\infty\frac{-lnn}{n^x}| ζ(x)=n=1nxlnn,因为级数 ∑ n = 1 ∞ l n n n x \sum_{n=1}^\infty\frac{lnn}{n^x} n=1nxlnn在任何区间 [ 1 + δ , + ∞ ) [1+\delta,+\infty) [1+δ,+)中一致收敛,所以函数 ζ ( x ) \zeta(x) ζ(x) ( 1 , + ∞ ) (1,+\infty) (1,+)中有连续的导函数 ζ ′ ( x ) \zeta'(x) ζ(x)
  7. p > 0 p>0 p>0,证明函数 f ( x ) = ∑ n = 1 ∞ s i n n x n 2 + p f(x)=\sum_{n=1}^\infty\frac{sinnx}{n^{2+p}} f(x)=n=1n2+psinnx ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)中有连续的导函数
    证明:
    ∣ f ′ ( x ) ∣ = ∣ ∑ n = 1 ∞ c o s n x n 1 + p ∣ ≤ ∑ n = 1 ∞ 1 n 1 + p |f'(x)|=|\sum_{n=1}^\infty\frac{cosnx}{n^{1+p}}|\leq\sum_{n=1}^\infty\frac{1}{n^{1+p}} f(x)=n=1n1+pcosnxn=1n1+p1,因为级数 ∑ n = 1 ∞ 1 n 1 + p \sum_{n=1}^\infty\frac{1}{n^{1+p}} n=1n1+p1收敛,所以函数序列 f ′ ( x ) f'(x) f(x)一致收敛,所以有连续的导函数
  8. ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an收敛。证明级数 ∑ n = 1 ∞ a n n x \sum_{n=1}^\infty\frac{a_n}{n^x} n=1nxan [ 0 , + ∞ ) [0,+\infty) [0,+)中一致收敛,并有 lim ⁡ x → 0 + 0 ∑ n = 1 ∞ a n n x = ∑ n = 1 ∞ a n \lim_{x\to0+0}\sum_{n=1}^\infty\frac{a_n}{n^x}=\sum_{n=1}^\infty a_n limx0+0n=1nxan=n=1an
    证明:
    x ∈ [ 0 , + ∞ ) x\in[0,+\infty) x[0,+)时, 1 n x \frac{1}{n^x} nx1关于n单调,而且 1 n x ≤ 1 \frac{1}{n^x}\leq1 nx11,因为 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an收敛,所以级数 ∑ n = 1 ∞ a n n x \sum_{n=1}^\infty\frac{a_n}{n^x} n=1nxan [ 0 , + ∞ ) [0,+\infty) [0,+)中一致收敛,而且 lim ⁡ x → 0 + 0 ∑ n = 1 ∞ a n n x = ∑ n = 1 ∞ lim ⁡ x → 0 + 0 a n n x = ∑ n = 1 ∞ a n \lim_{x\to0+0}\sum_{n=1}^\infty\frac{a_n}{n^x}=\sum_{n=1}^\infty\lim_{x\to0+0}\frac{a_n}{n^x}=\sum_{n=1}^\infty a_n limx0+0n=1nxan=n=1limx0+0nxan=n=1an
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值