高数习题7.3(下)

  1. ∭ Ω x 2 + y 2 + z 2 d V \iiint_{\Omega}\sqrt{x^2+y^2+z^2}dV Ωx2+y2+z2 dV Ω \Omega Ω x 2 + y 2 + z 2 = z x^2+y^2+z^2=z x2+y2+z2=z所围.
    解:
    ∭ Ω x 2 + y 2 + z 2 d V = ∫ 0 π 2 d φ ∫ 0 2 π d θ ∫ 0 c o s φ ρ ⋅ ρ 2 s i n φ d ρ = π 2 ∫ 0 π 2 c o s 4 φ s i n φ d φ = π 10 \begin{aligned} \iiint_{\Omega}\sqrt{x^2+y^2+z^2}dV &= \int_0^{\frac{\pi}{2}}d\varphi\int_0^{2\pi}d\theta\int_0^{cos\varphi}\rho\cdot\rho^2sin\varphi d\rho\\ &= \frac{\pi}{2}\int_0^{\frac{\pi}{2}}cos^4\varphi sin\varphi d\varphi \\ &= \frac{\pi}{10} \end{aligned} Ωx2+y2+z2 dV=02πdφ02πdθ0cosφρρ2sinφdρ=2π02πcos4φsinφdφ=10π
  2. ∭ Ω z 2 d V \iiint_{\Omega}z^2dV Ωz2dV Ω : 3 ( x 2 + y 2 ) ≤ z ≤ 1 − x 2 − y 2 . \Omega:\sqrt{3(x^2+y^2)}\leq z\leq\sqrt{1-x^2-y^2}. Ω:3(x2+y2) z1x2y2 .
    解:
    ∭ Ω z 2 d V = ∫ 0 2 π d θ ∫ 0 1 2 r d r ∫ 3 r 1 − r 2 z 2 d z = 2 π 3 ∫ 0 1 2 r [ ( 1 − r 2 ) 3 2 − ( 3 r 2 ) 3 2 ] d r = 2 π 3 [ − 1 5 ( 1 − r 2 ) 5 2 − 3 3 5 r 5 ] ∣ 0 1 2 = 8 − 3 3 60 π \begin{aligned} \iiint_{\Omega}z^2dV &= \int_0^{2\pi}d\theta\int_0^{\frac{1}{2}}rdr\int_{\sqrt{3}r}^{\sqrt{1-r^2}}z^2dz\\ &= \frac{2\pi}{3}\int_0^{\frac{1}{2}}r[(1-r^2)^{\frac{3}{2}}-(3r^2)^{\frac{3}{2}}]dr\\ &= \frac{2\pi}{3}[-\frac{1}{5}(1-r^2)^{\frac{5}{2}}-\frac{3\sqrt{3}}{5}r^5]|_0^{\frac{1}{2}}\\ &= \frac{8-3\sqrt{3}}{60}\pi \end{aligned} Ωz2dV=02πdθ021rdr3 r1r2 z2dz=32π021r[(1r2)23(3r2)23]dr=32π[51(1r2)25533 r5]021=60833 π
  3. ∭ Ω z d V x 2 + y 2 + z 2 \iiint_{\Omega}\frac{zdV}{\sqrt{x^2+y^2+z^2}} Ωx2+y2+z2 zdV Ω \Omega Ω x 2 + y 2 + z 2 = 2 a z x^2+y^2+z^2=2az x2+y2+z2=2az所围 ( a > 0 ) (a>0) (a>0).
    解:
    ∭ Ω z d V x 2 + y 2 + z 2 = ∫ 0 π 2 d φ ∫ 0 2 π d θ ∫ 0 2 a c o s φ c o s φ ⋅ ρ 2 s i n φ d ρ = 16 π a 3 3 ∫ 0 π 2 c o s 4 φ s i n φ d φ = 16 15 π a 3 \begin{aligned} \iiint_{\Omega}\frac{zdV}{\sqrt{x^2+y^2+z^2}} &= \int_0^{\frac{\pi}{2}}d\varphi\int_0^{2\pi}d\theta\int_0^{2acos\varphi}cos\varphi\cdot\rho^2sin\varphi d\rho\\ &= \frac{16\pi a^3}{3}\int_0^{\frac{\pi}{2}}cos^4\varphi sin\varphi d\varphi \\ &= \frac{16}{15}\pi a^3 \end{aligned} Ωx2+y2+z2 zdV=02πdφ02πdθ02acosφcosφρ2sinφdρ=316πa302πcos4φsinφdφ=1516πa3
  4. ∭ Ω 2 x y + 1 x 2 + y 2 + z 2 d V \iiint_{\Omega}\frac{2xy+1}{x^2+y^2+z^2}dV Ωx2+y2+z22xy+1dV Ω \Omega Ω x 2 + y 2 + z 2 = 2 a 2 x^2+y^2+z^2=2a^2 x2+y2+z2=2a2 a z = x 2 + y 2 ( a > 0 ) az=x^2+y^2(a>0) az=x2+y2(a>0)所围且 z ≥ 0 z\geq0 z0的部分.
    解:
    因为 Ω \Omega Ω关于 y O z yOz yOz面对称,所以 ∭ Ω 2 x y x 2 + y 2 + z 2 d V = 0 \iiint_{\Omega}\frac{2xy}{x^2+y^2+z^2}dV=0 Ωx2+y2+z22xydV=0
    ∭ Ω 2 x y + 1 x 2 + y 2 + z 2 d V = ∭ Ω 1 x 2 + y 2 + z 2 d V = ∫ 0 2 π d θ ∫ 0 a d r ∫ r 2 a 2 a 2 − r 2 r r 2 + z 2 d z = 2 π ∫ 0 a a r c t a n ( 2 a 2 − r 2 r ) − a r c t a n ( r a ) d r = 2 π [ r a r c t a n 2 a 2 r 2 − 1 − 2 a 2 − r 2 − r a r c t a n ( r a ) + a 2 l n ( a 2 + r 2 ) ] ∣ 0 a = π a ( l n 2 − 2 + 2 2 ) \begin{aligned} \iiint_{\Omega}\frac{2xy+1}{x^2+y^2+z^2}dV &= \iiint_{\Omega}\frac{1}{x^2+y^2+z^2}dV\\ &= \int_0^{2\pi}d\theta\int_0^adr\int_{\frac{r^2}{a}}^{\sqrt{2a^2-r^2}}\frac{r}{r^2+z^2}dz \\ &= 2\pi\int_0^aarctan(\frac{\sqrt{2a^2-r^2}}{r})-arctan(\frac{r}{a})dr \\ &= 2\pi[rarctan\sqrt{\frac{2a^2}{r^2}-1}-\sqrt{2a^2-r^2}-rarctan(\frac{r}{a})+\frac{a}{2}ln(a^2+r^2)]|_0^a\\ &= \pi a(ln2-2+2\sqrt{2}) \end{aligned} Ωx2+y2+z22xy+1dV=Ωx2+y2+z21dV=02πdθ0adrar22a2r2 r2+z2rdz=2π0aarctan(r2a2r2 )arctan(ar)dr=2π[rarctanr22a21 2a2r2 rarctan(ar)+2aln(a2+r2)]0a=πa(ln22+22 )
  5. ∭ Ω d V x 2 + y 2 + ( z − 2 ) 2 , Ω : x 2 + y 2 + z 2 ≤ 1. \iiint_{\Omega}\frac{dV}{\sqrt{x^2+y^2+(z-2)^2}},\Omega:x^2+y^2+z^2\leq1. Ωx2+y2+(z2)2 dV,Ω:x2+y2+z21.
    解:
    ∭ Ω d V x 2 + y 2 + ( z − 2 ) 2 = ∫ 0 2 π d θ ∫ 0 1 d ρ ∫ 0 π ρ 2 s i n φ ρ 2 s i n 2 φ + ( ρ c o s φ − 2 ) 2 d φ = 2 π ∫ 0 1 d ρ ∫ 0 π ρ 2 s i n φ ρ 2 + 4 − 4 ρ c o s φ d φ = 2 π ∫ 0 1 d ρ ∫ 0 π ρ 4 ρ 2 + 4 − 4 ρ c o s φ d ( − 4 ρ c o s φ ) = π ∫ 0 1 ρ ρ 2 + 4 − 4 ρ c o s φ ∣ 0 π d ρ = 2 π ∫ 0 1 ρ 2 d ρ = 2 π 3 \begin{aligned} \iiint_{\Omega}\frac{dV}{\sqrt{x^2+y^2+(z-2)^2}} &= \int_0^{2\pi}d\theta\int_0^1d\rho\int_0^{\pi}\frac{\rho^2sin\varphi}{\sqrt{\rho^2sin^2\varphi+(\rho cos\varphi-2)^2}}d\varphi\\ &=2\pi\int_0^1d\rho\int_0^{\pi}\frac{\rho^2sin\varphi}{\sqrt{\rho^2+4-4\rho cos\varphi}}d\varphi\\ &=2\pi\int_0^1d\rho\int_0^{\pi}\frac{\rho}{4\sqrt{\rho^2+4-4\rho cos\varphi}}d(-4\rho cos\varphi)\\ &=\pi\int_0^1\rho\sqrt{\rho^2+4-4\rho cos\varphi}|_0^{\pi}d\rho\\ &=2\pi\int_0^1\rho^2d\rho\\ &=\frac{2\pi}{3} \end{aligned} Ωx2+y2+(z2)2 dV=02πdθ01dρ0πρ2sin2φ+(ρcosφ2)2 ρ2sinφdφ=2π01dρ0πρ2+44ρcosφ ρ2sinφdφ=2π01dρ0π4ρ2+44ρcosφ ρd(4ρcosφ)=π01ρρ2+44ρcosφ 0πdρ=2π01ρ2dρ=32π
  6. ∭ Ω ( x 3 + s i n y + z ) d V \iiint_{\Omega}(x^3+siny+z)dV Ω(x3+siny+z)dV Ω \Omega Ω x 2 + y 2 + z 2 ≤ 2 a z , x 2 + y 2 ≤ z ( a > 0 ) x^2+y^2+z^2\leq2az,\sqrt{x^2+y^2}\leq z(a>0) x2+y2+z22az,x2+y2 z(a>0)所围.
    解:
    因为 Ω \Omega Ω关于 y O z yOz yOz面对称,所以 ∭ Ω x 3 d V = 0 \iiint_{\Omega}x^3dV=0 Ωx3dV=0
    因为 Ω \Omega Ω关于 x O z xOz xOz面对称,所以 ∭ Ω s i n y d V = 0 \iiint_{\Omega}sinydV=0 ΩsinydV=0
    ∭ Ω ( x 3 + s i n y + z ) d V = ∭ Ω z d V = ∫ 0 2 π d θ ∫ 0 π 4 d φ ∫ 0 2 a c o s φ ρ c o s φ ⋅ ρ 2 s i n φ d ρ = 8 a 4 π ∫ 0 π 4 c o s 5 φ s i n φ d φ = 8 a 4 π [ − c o s 6 φ 6 ] ∣ 0 π 4 = 7 a 4 π 6 \begin{aligned} \iiint_{\Omega}(x^3+siny+z)dV &= \iiint_{\Omega}zdV\\ &= \int_0^{2\pi}d\theta\int_0^{\frac{\pi}{4}}d\varphi\int_0^{2acos\varphi}\rho cos\varphi\cdot\rho^2sin\varphi d\rho \\ &= 8a^4\pi\int_0^{\frac{\pi}{4}}cos^5\varphi sin\varphi d\varphi \\ &= 8a^4\pi[-\frac{cos^6\varphi}{6}]|_0^{\frac{\pi}{4}}\\ &= \frac{7a^4\pi}{6} \end{aligned} Ω(x3+siny+z)dV=ΩzdV=02πdθ04πdφ02acosφρcosφρ2sinφdρ=8a4π04πcos5φsinφdφ=8a4π[6cos6φ]04π=67a4π
  7. ∭ Ω ( x 2 y + 3 x y z ) d V , Ω : 1 ≤ x ≤ 2 , 0 ≤ x y ≤ 2 , 0 ≤ z ≤ 1. \iiint_{\Omega}(x^2y+3xyz)dV,\Omega:1\leq x\leq2,0\leq xy\leq2,0\leq z\leq1. Ω(x2y+3xyz)dV,Ω:1x2,0xy2,0z1.
    解:令 u = x , v = x y , w = 3 z u=x,v=xy,w=3z u=x,v=xy,w=3z,则 x = u , y = v u , z = w 3 x=u,y=\frac{v}{u},z=\frac{w}{3} x=u,y=uv,z=3w
    J = D ( x , y , z ) D ( u , v , w ) = ∣ 1 0 0 − v u 2 1 u 0 0 0 1 3 ∣ = 1 3 u J=\frac{D(x,y,z)}{D(u,v,w)}=\begin{vmatrix}1 & 0 & 0\\ -\frac{v}{u^2} & \frac{1}{u} & 0\\0 & 0 & \frac{1}{3}\\ \end{vmatrix}=\frac{1}{3u} J=D(u,v,w)D(x,y,z)=1u2v00u100031=3u1
    ∭ Ω ( x 2 y + 3 x y z ) d V = ∭ Ω ( u v + v w ) ⋅ 1 3 u d V = ∫ 1 2 d u ∫ 0 2 d v ∫ 0 3 u v + v w 3 u d w = ∫ 1 2 d u ∫ 0 2 2 u v + 3 v 2 u d v = ∫ 1 2 ( 2 + 3 u ) d u = 2 + 3 l n 2 \begin{aligned} \iiint_{\Omega}(x^2y+3xyz)dV &= \iiint_{\Omega}(uv+vw)\cdot\frac{1}{3u}dV\\ &= \int_1^2du\int_0^2dv\int_0^3\frac{uv+vw}{3u}dw\\ &= \int_1^2du\int_0^2\frac{2uv+3v}{2u}dv\\ &= \int_1^2(2+\frac{3}{u})du\\ &= 2+3ln2 \end{aligned} Ω(x2y+3xyz)dV=Ω(uv+vw)3u1dV=12du02dv033uuv+vwdw=12du022u2uv+3vdv=12(2+u3)du=2+3ln2
  8. ∭ Ω ( x + 1 ) ( y + 1 ) d V , Ω : x 2 a 2 + y 2 b 2 + z 2 c 2 ≤ 1. \iiint_{\Omega}(x+1)(y+1)dV,\Omega:\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq1. Ω(x+1)(y+1)dV,Ω:a2x2+b2y2+c2z21.
    解:
    因为 Ω \Omega Ω关于 y O z yOz yOz面对称,所以 ∭ Ω x d V = 0 , ∭ Ω x y d V = 0 \iiint_{\Omega}xdV=0,\iiint_{\Omega}xydV=0 ΩxdV=0,ΩxydV=0
    因为 Ω \Omega Ω关于 x O z xOz xOz面对称,所以 ∭ Ω y d V = 0 , ∭ Ω x y d V = 0 \iiint_{\Omega}ydV=0,\iiint_{\Omega}xydV=0 ΩydV=0,ΩxydV=0
    x = a ρ s i n φ c o s θ , y = b ρ s i n φ s i n θ , z = c ρ c o s φ x=a\rho sin\varphi cos\theta,y=b\rho sin\varphi sin\theta,z=c\rho cos\varphi x=aρsinφcosθ,y=bρsinφsinθ,z=cρcosφ,则:
    J = D ( x , y , z ) D ( ρ , φ , θ ) = ∣ a s i n φ c o s θ a ρ c o s φ c o s θ − a ρ s i n φ s i n θ b s i n φ s i n θ b ρ c o s φ s i n θ b ρ s i n φ c o s θ c c o s φ − c ρ s i n φ 0 ∣ = a b c ρ 2 s i n φ J=\frac{D(x,y,z)}{D(\rho,\varphi,\theta)}=\begin{vmatrix}asin\varphi cos\theta & a\rho cos\varphi cos\theta & -a\rho sin\varphi sin\theta\\ bsin\varphi sin\theta & b\rho cos\varphi sin\theta & b\rho sin\varphi cos\theta\\ccos\varphi & -c\rho sin\varphi & 0\\ \end{vmatrix}=abc\rho^2sin\varphi J=D(ρ,φ,θ)D(x,y,z)=asinφcosθbsinφsinθccosφaρcosφcosθbρcosφsinθcρsinφaρsinφsinθbρsinφcosθ0=abcρ2sinφ
    ∭ Ω ( x + 1 ) ( y + 1 ) d V = ∭ Ω d V = a b c ∫ 0 π d φ ∫ 0 2 π d θ ∫ 0 1 ρ 2 s i n φ d ρ = 4 a b c π 3 \begin{aligned} \iiint_{\Omega}(x+1)(y+1)dV &= \iiint_{\Omega}dV\\ &= abc\int_0^{\pi}d\varphi\int_0^{2\pi}d\theta\int_0^1\rho^2sin\varphi d\rho\\ &= \frac{4abc\pi}{3} \end{aligned} Ω(x+1)(y+1)dV=ΩdV=abc0πdφ02πdθ01ρ2sinφdρ=34abcπ
  9. ∭ Ω ( x + y + z ) d V , Ω : ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ≤ a 2 . \iiint_{\Omega}(x+y+z)dV,\Omega:(x-x_0)^2+(y-y_0)^2+(z-z_0)^2\leq a^2. Ω(x+y+z)dV,Ω:(xx0)2+(yy0)2+(zz0)2a2.
    解:
    x = ρ s i n φ c o s θ + x 0 , y = ρ s i n φ s i n θ + y 0 , z = ρ c o s φ + z 0 x=\rho sin\varphi cos\theta+x_0,y=\rho sin\varphi sin\theta+y_0,z=\rho cos\varphi+z_0 x=ρsinφcosθ+x0,y=ρsinφsinθ+y0,z=ρcosφ+z0,则:
    J = D ( x , y , z ) D ( ρ , φ , θ ) = ∣ a s i n φ c o s θ a ρ c o s φ c o s θ − a ρ s i n φ s i n θ b s i n φ s i n θ b ρ c o s φ s i n θ b ρ s i n φ c o s θ c c o s φ − c ρ s i n φ 0 ∣ = ρ 2 s i n φ J=\frac{D(x,y,z)}{D(\rho,\varphi,\theta)}=\begin{vmatrix}asin\varphi cos\theta & a\rho cos\varphi cos\theta & -a\rho sin\varphi sin\theta\\ bsin\varphi sin\theta & b\rho cos\varphi sin\theta & b\rho sin\varphi cos\theta\\ccos\varphi & -c\rho sin\varphi & 0\\ \end{vmatrix}=\rho^2sin\varphi J=D(ρ,φ,θ)D(x,y,z)=asinφcosθbsinφsinθccosφaρcosφcosθbρcosφsinθcρsinφaρsinφsinθbρsinφcosθ0=ρ2sinφ
    ∭ Ω ( x + y + z ) d V = ∫ 0 π d φ ∫ 0 2 π d θ ∫ 0 a ( ρ s i n φ c o s θ + x 0 + ρ s i n φ s i n θ + y 0 + ρ c o s φ + z 0 ) ρ 2 s i n φ d ρ = ∫ 0 π d φ ∫ 0 2 π d θ ∫ 0 a ( x 0 + y 0 + z 0 ) ρ 2 s i n φ d ρ = 4 a 3 ( x 0 + y 0 + z 0 ) π 3 \begin{aligned} \iiint_{\Omega}(x+y+z)dV &= \int_0^{\pi}d\varphi\int_0^{2\pi}d\theta\int_0^a(\rho sin\varphi cos\theta+x_0+\rho sin\varphi sin\theta+y_0+\rho cos\varphi+z_0)\rho^2sin\varphi d\rho\\ &= \int_0^{\pi}d\varphi\int_0^{2\pi}d\theta\int_0^a(x_0+y_0+z_0)\rho^2sin\varphi d\rho\\ &= \frac{4a^3(x_0+y_0+z_0)\pi}{3} \end{aligned} Ω(x+y+z)dV=0πdφ02πdθ0a(ρsinφcosθ+x0+ρsinφsinθ+y0+ρcosφ+z0)ρ2sinφdρ=0πdφ02πdθ0a(x0+y0+z0)ρ2sinφdρ=34a3(x0+y0+z0)π
  10. 分别用柱坐标和球坐标,把三重积分 I = ∭ Ω f ( x 2 + y 2 + z 2 ) d V I=\iiint_{\Omega}f(\sqrt{x^2+y^2+z^2})dV I=Ωf(x2+y2+z2 )dV表成累次积分,其中 Ω \Omega Ω为球体 x 2 + y 2 + z 2 ≤ z x^2+y^2+z^2\leq z x2+y2+z2z在锥面 z = 3 x 2 + 3 y 2 z=\sqrt{3x^2+3y^2} z=3x2+3y2 上方的部分.
    解:
    柱坐标: I = ∫ 0 2 π d θ ∫ 0 3 4 d r ∫ 3 r 1 2 + 1 4 − r 2 f ( r 2 + z 2 ) r d z I=\int_0^{2\pi}d\theta\int_0^{\frac{\sqrt{3}}{4}}dr\int_{\sqrt{3}r}^{\frac{1}{2}+\sqrt{\frac{1}{4}-r^2}}f(\sqrt{r^2+z^2})rdz I=02πdθ043 dr3 r21+41r2 f(r2+z2 )rdz
    球坐标: I = ∫ 0 2 π d θ ∫ 0 π 6 d φ ∫ 0 c o s φ f ( ρ ) ρ 2 s i n φ d ρ I=\int_0^{2\pi}d\theta\int_0^{\frac{\pi}{6}}d\varphi\int_0^{cos\varphi}f(\rho)\rho^2sin\varphi d\rho I=02πdθ06πdφ0cosφf(ρ)ρ2sinφdρ
  11. 化累次积分 I = ∫ 0 a d x ∫ 0 x d y ∫ 0 y f ( z ) d z I=\int_0^adx\int_0^xdy\int_0^yf(z)dz I=0adx0xdy0yf(z)dz为定积分.
    解: Ω \Omega Ω为平面 y = x , z = y , x = a , x = a y=x,z=y,x=a,x=a y=x,z=y,x=a,x=a所围成的部分。
    I = ∫ 0 a d x ∫ 0 x d y ∫ 0 y f ( z ) d z = ∫ 0 a d z ∫ z a d x ∫ z x f ( z ) d y = 1 2 ∫ 0 a f ( z ) ( a − z ) 2 d z \begin{aligned} I &= \int_0^adx\int_0^xdy\int_0^yf(z)dz\\ &= \int_0^adz\int_z^adx\int_z^xf(z)dy\\ &= \frac{1}{2}\int_0^af(z)(a-z)^2dz \end{aligned} I=0adx0xdy0yf(z)dz=0adzzadxzxf(z)dy=210af(z)(az)2dz
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
代数曲线 出版时间:2014年版 丛编项: 21世纪复旦大学研究生教学用书 内容简介 本书由作者在复旦大学数学研究所开设的硕士研究生学位课程“代数曲线”的讲稿整理而成.全书共分7章,内容包括:紧Riemann面、代数簇、一维代数函数域、Riemann-Roch定理、平面代数曲线、椭圆曲线、曲线的典范映射等. 本书适合基础数学专业低年级研究生使用. 目录 第1章 紧Riemann面 1.1紧Riemann面的定义和初步性质 1.2紧Riemann面上的亚纯函数 1.2.1预备知识 1.2.2紧Riemann面上的微分形式 1.2.3定理1.2.1的证明 第2章 代数簇 2.1几个代数定理 2.2仿射空间中的代数集 2.3射影空间中的代数集 2.4准代数簇 2.5准代数簇的局部环和函数域 2.6代数簇的积 2.7准代数簇的维数理论 2.8射影簇的Hilbert多项式 2.9有理映射 2.10代数簇的光滑性 第3章 一维代数函数域 3.1有限可分扩张的范和迹 3.2域的超越扩张 3.3离散赋值环和Dedekind整区 3.4射影曲线与一维代数函数域 3.5曲线的正规化 3.6紧Riemann面的亚纯函数域 第4章 RiemannRoch定理 4.1除子 4.2adéle 4.3典范除子 4.4形式Laurent级数 4.5微分形式和留数 4.6紧Riemann面的亏格 4.7Hurwitz公式 4.8有理曲线 第5章 平面代数曲线 5.1Bézout定理 5.2平面代数曲线的奇点 5.3平面代数曲线的亏格 第6章 椭圆曲线 6.1曲线的二重覆盖 6.2椭圆曲线的j-不变量 6.3椭圆曲线上的群结构 6.4椭圆函数理论 6.5模形式与椭圆曲线 第7章 曲线的典范映射 7.1曲线的射影映射 7.2射影曲线的次数 7.3典范线性系 参考文献
4S店客户管理小程序-毕业设计,基于微信小程序+SSM+MySql开发,源码+数据库+论文答辩+毕业论文+视频演示 社会的发展和科学技术的进步,互联网技术越来越受欢迎。手机也逐渐受到广大人民群众的喜爱,也逐渐进入了每个用户的使用。手机具有便利性,速度快,效率高,成本低等优点。 因此,构建符合自己要求的操作系统是非常有意义的。 本文从管理员、用户的功能要求出发,4S店客户管理系统中的功能模块主要是实现管理员服务端;首页、个人中心、用户管理、门店管理、车展管理、汽车品牌管理、新闻头条管理、预约试驾管理、我的收藏管理、系统管理,用户客户端:首页、车展、新闻头条、我的。门店客户端:首页、车展、新闻头条、我的经过认真细致的研究,精心准备和规划,最后测试成功,系统可以正常使用。分析功能调整与4S店客户管理系统实现的实际需求相结合,讨论了微信开发者技术与后台结合java语言和MySQL数据库开发4S店客户管理系统的使用。 关键字:4S店客户管理系统小程序 微信开发者 Java技术 MySQL数据库 软件的功能: 1、开发实现4S店客户管理系统的整个系统程序; 2、管理员服务端;首页、个人中心、用户管理、门店管理、车展管理、汽车品牌管理、新闻头条管理、预约试驾管理、我的收藏管理、系统管理等。 3、用户客户端:首页、车展、新闻头条、我的 4、门店客户端:首页、车展、新闻头条、我的等相应操作; 5、基础数据管理:实现系统基本信息的添加、修改及删除等操作,并且根据需求进行交流信息的查看及回复相应操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值