算法概论(注释版)课后习题8.15

Description

8.15 Show that the following problem is NP-complete.
MAXIMUM COMMON SUBGRAPH
Input: Two graphes G1=(V1,E1) and G2=(V2,E2); a budget b.
Output: Two set of nodes V1‘⊆V1 and V2‘⊆V2 whose deletion leaves at least b nodes in each graph, makes the graphs identical.

Analyse

这个问题的本意就是在两个图里面找一个公共子图,题目对公共子图的描述是,我们对两个图G1和G2,他们分别去掉点集V1‘和V2‘之后,两个图都得到结点数至少为b的子图,且两个子图完全相同。
我们先证明它是个NP问题,因为有最大公共子图,并且已经知道他们的顶点,可在多项式时间内检验是否正确,故是NP 问题。
我们再证明它是个NP完全问题,我们可以设G1=(V,E),G2=(V,Φ),也就是说G1和G2的点集相同,但G2没有边集。若当我们在G1上找到一个大小至少为b的独立子集的时候,那么G1和G2就存在大小至少为b的公共子图了。所以它属于一个NP完全问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值