矩阵分解 - 奇异值分解SVD(计算)

本文详细介绍了奇异值分解(SVD)的概念、计算过程,并通过一个矩阵示例展示如何进行SVD计算。此外,还探讨了SVD在矩阵截断和高阶奇异值分解(HOSVD)中的应用。
摘要由CSDN通过智能技术生成

本篇介绍矩阵分解中最重要的分解方式
奇异值分解 - Singular Value Decomposition (SVD)

一 定义 : 给定一个 m × n m\times n m×n的矩阵M,可以将其作如下形式的分解
W = U Σ V T W = U \Sigma V^{T} W=UΣVT

二 计算过程与说明
构造一个辅助矩阵:
C = W T W = V D 1 V T = V Σ T Σ V T = ( V Σ T U T ) ( U Σ V T ) ‾ C = W^TW = VD_1V^T = V \Sigma^T\Sigma V^T = (V \Sigma^T U^T)\underline{(U \Sigma V^T)} C=WTW=VD1VT=VΣTΣVT=(VΣTUT)(UΣVT)
B = W W T = U D 2 U T = V Σ Σ T U T = ( U Σ T V T ) ( V Σ U T ) B = WW^T = UD_2U^T = V \Sigma\Sigma^T U^T = (U \Sigma^T V^T)(V \Sigma U^T) B=WWT=UD2UT=VΣΣTUT=(UΣTVT)(VΣUT)
此时,划线部分就是我们想要的分解方式.
两个式子基本一样,对第一个式子作一些说明,第二个类似

说明1: 第一个等式是我们构造的矩阵定义
说明2: 第二个等式是矩阵的特征值分解,因为C一定是一个实对称方阵(证明很简单),所以可以进行正交相似变换
说明3: 将特征值对角阵D开方,得到奇异值矩阵 Σ \Sigma Σ
说明4: 因为 U T U = E U^{T}U = E UTU=E(正交相似变换的性质),所以这样添加对等式没影响.
说明5: C C C B B B特征值是相同的(记得本科学的矩阵特征值的性质),具体的特征矩阵要跟C和B规模最大的匹配
说明6: C C C B B B的规模分别为 n × n n\times n n×n m × m m\times m m×m,但是他们特征值其实是相同的。
Σ T Σ = [ σ 1 2 0 0 0 0 σ 2 2 0 0 0 0 ⋱ 0 0 0 0 ⋱ ] n × n Σ Σ T = [ σ 1 2 0 0 0 0 σ 2 2 0 0 0 0 ⋱

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值