两种ICP的改进算法:PLICP与NICP

本文深入介绍了ICP算法的两种改进版本:PLICP(Point to Line ICP)和NICP(Normal ICP)。PLICP通过匹配点到直线来提高匹配精度,利用点到平面的距离作为优化目标,从而实现更快的收敛速度。而NICP不仅考虑点距离,还引入法向量一致性,增强了匹配的鲁棒性。文章详述了两种算法的匹配原则、目标函数构建和优化方法,同时讨论了各自的优缺点及应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

前言

在之前的文章中(ICP方法详细推导),我们介绍了ICP的基本思想与详细的推导。本文将介绍ICP方法的两种改进,分别是:PLICP[1]与NICP[2]。本文将分别介绍两种改进的基本思想,具体算法以及一些补充说明。若有理解不到位和错误之处,请以论文原文为准。

第一部分 PLICP

一、基本思想

PLICP中的“PL”表示”Point to Line”,顾名思义,在匹配时是一个点与一个直线进行匹配,而不是传统方法的点与点进行匹配。之所以有这种思想,是因为我们认为每次扫描的数据是对真实物理世界的一个平面的采样,所以我们在匹配时应该尽可能与这个直线去匹配而不是具体的采样点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值