文章:Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network
摘要:
与大物体相比,遥感图像中的小物体检测性能并不理想,尤其是在低分辨率和嘈杂的图像中。一种基于生成对抗网络(GAN)的模型,称为增强超分辨率GAN(ESRGAN),具有出色的图像增强性能,但是重建的图像通常会丢失高频边缘信息。因此,物体检测性能在恢复的噪点和低分辨率遥感影像上显示出小目标物体的退化。受边缘增强GAN(EEGAN)和ESRGAN成功的启发,本研究使用了一种新型的边缘增强超分辨率GAN(EESRGAN)来改善遥感图像的质量,并以端到端的方式使用了不同的探测器网络,将检测器损耗反向传播到EESRGAN中,以提高检测性能。研究人员提出了一种包含三个组件的体系结构:ESRGAN,EEN (边缘增强网络)和检测网络。对于ESRGAN和EEN,使用了RRDB(残差密集块),对于检测器网络,我们使用了更快的基于区域的FRCNN(两阶段检测器)和SSD(一级检测器)。在相关数据集上进行的大量实验表明,该方法具有出色的性能。
研究背景及问题:
遥感图像目