SSC:面向大规模场景识别的语义扫描context(IROS2021)

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

8c242a06bd417305e009a6cba2004a7b.png

标题:SSC: Semantic Scan Context for Large-Scale Place Recognition

作者:Lin Li, Xin Kong, Xiangrui Zhao, Tianxin Huang and Yong liu

机构:Zhejiang University

来源:IROS 2021

编译:Zhuhu

审核:靳军

摘要

位置识别使SLAM系统具有纠正累积错误的能力。与包含丰富纹理特征的图像不同,点云几乎是纯几何信息,这给基于点云的位置识别带来了挑战。现有的工作通常将坐标、法线、反射强度等底层特征编码为局部或全局描述符来表示场景。此外,在匹配描述符时,往往忽略点云之间的平移。与现有的大多数方法不同,我们探索使用高层特征,即语义,来提高描述符的表示能力。此外,在匹配描述符时,我们尝试更正点云之间的平移以提高精度。具体地说,我们提出了一种新的全局描述符--语义扫描上下文,它利用语义信息来更有效地表示场景。我们还提出了一种两步全局语义ICP算法来获得用于对准点云的3D姿态,以提高匹配性能。我们在Kitti数据集上的实验表明,我们的方法在很大程度上优于最先进的方法。我们的代码可从以下网址获得:https://github.com/lilin-hitcrt/SSC

主要工作与贡献

  1. 为基于 LiDAR 的位置识别提出了一种新颖的全局描述符,它利用语义信息有效地对 3D 场景进行编码

  2. 我们提出了一个不需要任何初始值的两步全局语义ICP来获得点云的3D姿态 。

  3. 将点云与获得的 3D 姿态对齐,以消除旋转和平移误差对描述符相似性的影响,这也可以进一步有益于 SLAM 系统作为良好的初始姿态.

  4. 在 KITTI 里程计数据集上进行的详尽实验表明,我们的方法在位置识别和姿态估计方面都达到了最先进的性能。

算法流程

算法的整个框架如下,包含了两个部分:两阶段的全局语义ICP和语义描述上下文(SSC)。首先在原始点云上进行语义分割,之后使用语义信息来保留代表性对象并将它们投影到x-y平面上。对投影的点云进行两阶段的全局语义ICP来得到3D姿态。最后,使用3D姿态对齐原始点云并生成全局描述符,通过全局描述符的匹配可得到相似度分数。

88d741dcd844adc8e6df988318acc06c.png

整体框架

3d988246752451b014fb1d625e1995c6.png

全局语义ICP

与一般的基于迭代优化的ICP算法(通常会得到局部最优值而不是全局最优)不同,论文中提出了一种两阶段的全局语义ICP算法,包含了快速偏航角计算和快速语义ICP。

快速偏航角计算

首先给定点云对, 选择具有代表性的物体,如建筑物,树干,交通标志的语义信息。然后将过滤后的点云转换为x-y平面中的极坐标。

e7f493638d1f7e7b9840183c1e645939.png

其中是转换后的第i个点,和分别代表了极坐标的长度和角度。每个转换后的点云之后会在偏航角方向分割为个扇区,我们保持每个扇区中具有最小极径的点。最后,我们得到两个含有元素的点云.之后根据方位角对点云对中的点进行排序,并将它们对应的极径保存为向量,与扫描上下文(Scan Context)类似,列向量的飘移和偏航角有关。

905cb6ff353176cb36f3eb32b54b737c.png

快速语义ICP

这部分主要考虑的是点云间的位移,首先将的方向旋转为和一样,并用表示旋转后的点云。则这种ICP问题可以描述为:

78a3d1f87495ab4999075f2134457a84.png

其中表示在点云中的对应点。

语义描述上下文(SSC)

给定一帧的点云,我们首先将其转化到极坐标系统,然后,类似Scan Context,将点云沿极坐标下的两个方向分为块,每个块可表示为:

179525735dbf7a582db44fefa6934634.png

其中是雷达的最大有效测量距离,其中.这样,描述子可用下述定义:

c4d926787399b1ba8576fc7278d0ddbe.png

相似度分数

根据上述描述子中对对齐后的点云计算其描述子, 能够得到其相似度分数为:

931b725850c431f1c4a5fd6757d9f1d5.png

其中函数的定义如下:

925b208d7df1459ea77d2e2e33a35ff8.png

实验结果

在KITTI数据集含有回环的序列中进行了实验,并且在序列08中含有反向的回环。

6ad7c7b0c4449a363e90db2a9f2a5fa4.png646e6f68b2b05d26982726ea3c5469b5.png4232cd9b3a1881872e5f82138c9f7d1f.png

的定义如下:

61d6ed6dcce8a36c10bd1c05f1cf75e1.png0298688bae552caa10ebc92049a13584.pngceec5923004323fecdb26209a9111060.png

结论

本文提出了一种新的基于语义的位置识别全局描述符。提出了一种两步全局语义ICP算法来获取点云对的三维姿态,通过对齐点云来提高描述符的匹配精度。此外,它还可以为点云配准提供良好的初始值。与最先进的方法相比,我们在Kitti里程计数据集上取得了领先的性能。

我们的方法也有一些局限性。像大多数地方识别方法一样,我们的方法不考虑俯仰角和滚转角。因此,我们的方法在某些极端情况下可能会失败。在未来的工作中,我们将尝试解决上述问题,进一步探索语义信息在基于激光雷达的 SLAM 系统中的应用。

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

3c716ff32f32d47d4ce56c90e78dc13c.png

▲长按加微信群或投稿

60a480478094274d95b6d2dba222ef0b.png

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列三维点云系列结构光系列手眼标定相机标定orb-slam3知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

5b6dbe725281719e58c6d0f7affe2107.png

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  4c72f377e345f51e7de69a4e0ab5d3f4.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值