CVPR 2023 | 人脸识别路漫漫:清华、北大等提出AT3D人脸识别系统攻击方法

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

ad015ba038601a9994141a9d417a3dab.jpeg

作者丨CV君

来源丨 我爱计算机视觉

点击进入—>3D视觉工坊学习交流群

向大家分享一篇新出的CVPR 2023论文,研究方向是人脸识别系统的对抗攻击。看了这篇文章你可能会立刻关闭你手机里和人脸识别相关的敏感应用,比如支付。

▌Towards Effective Adversarial Textured 3D Meshes on Physical Face Recognition

e979ab849ea32c289940b4cd0fcb6993.png

论文作者:Xiao Yang,Chang Liu,Longlong Xu,Yikai Wang,Yinpeng Dong,Ning Chen,Hang Su,Jun Zhu

作者单位:清华大学; 北京大学; RealAI; Zhongguancun Laboratory

论文链接:http://arxiv.org/abs/2303.15818v1

人脸识别,安全吗?

目前人脸识别技术的应用越来越广了,门禁、监控、手机解锁、移动支付让我们享受到了人脸识别技术带给我们的便利性。

即使是最名不见经传的人脸识别解决方案提供商,也声称人脸识别准确率99%以上,但它真的足够安全吗?

对人脸识别系统的攻击,可以分为两大方面:

  1. 逃避识别:张三不想在视频中被识别出来;

  2. 引导系统误识别:张三故意让系统把自己识别为李四。

一种直观的想法是,我就打印一张人脸图片贴在脸上,嗯,做黑产的人就是这么想的,这就是人脸识别系统的物理攻击。

不过现有的人脸识别系统均配有人脸活体检测等反欺诈技术,低端的物理攻击已经不太奏效。

17b739171bb7348fbb23cc6bf09b8b96.png
2D和3D攻击对比

如上图中打印一张人脸纹理纸贴脸上,这种人看起来怪怪的操作,早期也是可以让人脸识别系统陷入错误的,但在有类似深度信息和红外信息的反欺诈系统面前,特征就太明显了。

所以3D攻击就出现了,通过打印制作一个遮盖”眼鼻“的面罩,迷惑系统。如下图:

0cf6bcc686ff4db58d8f4ef520c27aab.png

这就是今天介绍的论文Towards Effective Adversarial Textured 3D Meshes on Physical Face Recognition的研究内容:如何设计更好的3D面罩,攻破人脸识别系统,实验结果显示,现有的人脸识别系统在这种物理攻击面前”溃不成军“。

特别需要注意的是,清华、北大的这篇论文,不是仅仅在实验室里自己搭建了一套人脸识别系统,自己的矛攻自己的盾,而是对商用系统进行攻击。

攻击原理

通过上面的介绍,我们已经知道,攻击的技术核心变为,打印什么样的3D面罩了。

无论是上面的哪一种攻击,其实最终都是要迷惑系统,让系统把攻击者误识别为他人。直接打印一张包含其他人(我们称他/她为”受害者“吧)的人脸纹理的面罩?这看起来好像可以试一试,但复杂的光照、变化的姿态表情是影响身份识别的。

这篇论文提供了更”好“的方法,总结起来就是:针对人脸识别系统,端到端”设计“3D面罩,然后3D打印出来。

请看下图:

56712215c1680e5c081651cff57070f3.png

”攻击者“和”受害者“的人脸图片首先使用3DMM算法进行人脸重建,其得到的系数,定义了人脸的形状、姿态、纹理等,即一套系数就是一张特定的人脸。训练的时候是调整这套系数对人脸特定区域(眼鼻部位)进行建模,得到一个3D网格,这个3D网格渲染后”戴到“攻击者的人脸图像上,然后把这张图片和受害者的图片输入给人脸识别系统,人脸识别部分的loss反向指导系统参数的更新。

很明显这个3D网格就是端到端设计出来的3D面罩。

论文中称,训练时所有步骤都是端到端可微的,包括渲染。

当然,我们是否可以不用对人脸进行3D重建,不在这套系数上更新参数呢?当然是可以的,但论文中称,在3DMM空间中进行参数更新,相当于正则化,而且实验证明,效果是又快又好!(有没有更好的,针对人脸系统攻击的人脸3D重建方法,也许是值得探索的方向)

另外,为什么选择的是人脸的”眼鼻“部位呢?其实作者分析并试验了眼睛、眼鼻、整个脸下半部,发现眼鼻是攻击效果最好的。这好像也不难理解,眼鼻部位受人脸表情影响比较小,而且几乎没有什么局部变化。

aab86497ec8d3b00ce8d62d506ffd830.png

实验结果

实验结果是惊人的。

作者们公布了其在主流的公开的人脸识别算法(ArcFace\MobileFace等)上的攻击结果,几乎全部都能实现80%攻击成功率,部分情况100%攻击成功。

c7c35b1dece0589d8b0d5185bf33b1ce.png af48c1ae26c9e9fa61905051fcc8f175.png

在商用系统上的攻击结果依然”触目惊心“。包括三个识别API、四个反欺诈API、两个流行的手机和两个自动门禁系统。

6c6a3fd23104bd64fc5008fadda30e27.png 07482c4bdc2760416a99fd88015a502c.png f253ddb969bb072b67e3d388ab722ee0.png 80d3de34b2dee4c89360d73b87ced2f2.png 121f6df2305348f4a40993554d529300.png 0b5d3b75334075856f25ad211b84bac5.png

因为比较敏感,本文不会提及作者选择的商用系统的名字,感兴趣的朋友可以去读读论文。

希望这样的研究,能被更多技术开发人员了解,促进人脸识别技术的应用成熟,看来要走的路还很长!

本文仅做学术分享,如有侵权,请联系删文。

点击进入—>3D视觉工坊学习交流群

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

3D视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
2.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
3.国内首个面向工业级实战的点云处理课程
4.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
5.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
6.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
7.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

8.从零搭建一套结构光3D重建系统[理论+源码+实践]

9.单目深度估计方法:算法梳理与代码实现

10.自动驾驶中的深度学习模型部署实战

11.相机模型与标定(单目+双目+鱼眼)

12.重磅!四旋翼飞行器:算法与实战

13.ROS2从入门到精通:理论与实战

14.国内首个3D缺陷检测教程:理论、源码与实战

15.基于Open3D的点云处理入门与实战教程

16.透彻理解视觉ORB-SLAM3:理论基础+代码解析+算法改进

17.机械臂抓取从入门到实战

重磅!粉丝学习交流群已成立

交流群主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、ORB-SLAM系列源码交流、深度估计、TOF、求职交流等方向。

扫描以下二维码,添加小助理微信(dddvisiona),一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

884f7e80062ca46891aa85826748d9f2.jpeg

▲长按加微信群或投稿,微信号:dddvisiona

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看,3天内无条件退款

4b6c320966c094ab5834e1dfa50e2173.jpeg

高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值