点击上方“3D视觉工坊”,选择“星标”
干货第一时间送达
作者丨陈er
来源丨 GiantPandaCV
编辑丨3D视觉工坊
点击进入—>3D视觉工坊学习交流群
【前言】
目前人体姿态估计总体分为Top-down和Bottom-up两种,与目标检测不同,无论是基于热力图或是基于检测器处理的关键点检测算法,都较为依赖计算资源,推理耗时略长,今年出现了以YOLO为基线的关键点检测器。玩过目标检测的童鞋都知道YOLO以及各种变种目前算是工业落地较多的一类检测器,其简单的设计思想,长期活跃的社区生态,使其始终占据着较高的话题度。
【演变】
在ECCV 2022和CVPRW 2022会议上,YoLo-Pose和KaPao(下称为yolo-like-pose)都基于流行的YOLO目标检测框架提出一种新颖的无热力图的方法,类似于很久以前谷歌使用回归计算关键点的思想,yolo-like-pose一不使用检测器进行二阶处理,二部使用热力图拼接,虽然是一种暴力回归关键点的检测算法,但在处理速度上具有一定优势。

kapao
去年11月,滑铁卢大学率先提出了 KaPao:Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation,基于YOLOv5进行关键点检测,该文章目前已被ECCV 2022接收,该算法所取得的性能如下:

paper:https://arxiv.org/abs/2111.08557 code:https://github.com/wmcnally/kapao
yolov5-pose
今年4月,yolo-pose也挂在了arvix,在论文中,通过调研发现 HeatMap 的方式普遍使用L1 Loss。然而,L1损失并不一定适合获得最佳的OKS。且由于HeatMap是概率图,因此在基于纯HeatMap的方法中不可能使用OKS作为loss,只有当回归到关键点位置时,OKS才能被用作损失函数。因此,yolo-pose使用oks loss作为关键点的损失

相关代码在https://github.com/TexasInstruments/edgeai-yolov5/blob/yolo-pose/utils/loss.py也可见到:
if self.kpt_label:
#Direct kpt prediction
pkpt_x = ps[:, 6::3] * 2. - 0.5
pkpt_y = ps[:, 7::3] * 2. - 0.5
pkpt_score = ps[:, 8::3]
#mask
kpt_mask = (tkpt[i][:, 0::2] != 0)
lkptv += self.BCEcls(pkpt_score, kpt_mask.float())
#l2 distance based loss
#lkpt += (((pkpt-tkpt[i])*kpt_mask)**2).mean() #Try to make this loss based on distance instead of ordinary difference
#oks based loss
d = (pkpt_x-tkpt[i][:,0::2])**2 + (pkpt_y-tkpt[i][:,1::2])**2
s = torch.prod(tbox[i][:,-2:], dim=1, keepdim=True)
kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0))/torch.sum(kpt_mask != 0)
lkpt += kpt_loss_factor*((1 - torch.exp(-d/(s*(4*sigmas**2)+1e-9)))*kpt_mask).mean()
相关性能如下:

yolov7-pose
上个星期,YOLOv7的作者也放出了关于人体关键点检测的模型,该模型基于YOLOv7-w6,

目前作者提供了.pt文件和推理测试的脚本,有兴趣的童靴可以去看看,本文的重点更偏向于对yolov7-pose.pt进行onnx文件的抽取和推理。
【yolov7-pose + onnxruntime】
首先下载好官方的预训练模型,使用提供的脚本进行推理:
% weigths = torch.load('weights/yolov7-w6-pose.pt')
% image = cv2.imread('sample/pose.jpeg')
!python pose.py

一、yolov7-w6 VS yolov7-w6-pose
首先看下yolov7-w6使用的检测头

表示一共有四组不同尺度的检测头,分别为15×15,30×30,60×60,120×120,对应输出的节点为114,115,116,117
nc对应coco的80个类别
no表示
再看看yolov7-w6-pose使用的检测头:
上述重复的地方不累述,讲几个点:
代表person一个类别
nkpt表示人体的17个关键点
二、修改export脚本
如果直接使用export脚本进行onnx的抽取一定报错,在上一节我们已经看到pose.pt模型使用的检测头为IKeypoint,那么脚本需要进行相应更改:在export.py的这个位置插入:
# 原代码:
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
model.model[-1].export = not opt.grid # set Detect() layer grid export
# 修改代码:
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, models.yolo.IKeypoint):
m.forward = m.forward_keypoint # assign forward (optional)
# 此处切换检测头
model.model[-1].export = not opt.grid # set Detect() layer grid export
forward_keypoint在原始的yolov7 repo源码中有,作者已经封装好,但估计是还没打算开放使用。
使用以下命令进行抽取:
python export.py --weights 'weights/yolov7-w6-pose.pt' --img-size 960 --simplify True
抽取后的onnx检测头:
三、onnxruntime推理
onnxruntime推理代码:
import onnxruntime
import matplotlib.pyplot as plt
import torch
import cv2
from torchvision import transforms
import numpy as np
from utils.datasets import letterbox
from utils.general import non_max_suppression_kpt
from utils.plots import output_to_keypoint, plot_skeleton_kpts
device = torch.device("cpu")
image = cv2.imread('sample/pose.jpeg')
image = letterbox(image, 960, stride=64, auto=True)[0]
image_ = image.copy()
image = transforms.ToTensor()(image)
image = torch.tensor(np.array([image.numpy()]))
print(image.shape)
sess = onnxruntime.InferenceSession('weights/yolov7-w6-pose.onnx')
out = sess.run(['output'], {'images': image.numpy()})[0]
out = torch.from_numpy(out)
output = non_max_suppression_kpt(out, 0.25, 0.65, nc=1, nkpt=17, kpt_label=True)
output = output_to_keypoint(output)
nimg = image[0].permute(1, 2, 0) * 255
nimg = nimg.cpu().numpy().astype(np.uint8)
nimg = cv2.cvtColor(nimg, cv2.COLOR_RGB2BGR)
for idx in range(output.shape[0]):
plot_skeleton_kpts(nimg, output[idx, 7:].T, 3)
# matplotlib inline
plt.figure(figsize=(8, 8))
plt.axis('off')
plt.imshow(nimg)
plt.show()
plt.savefig("tmp")
推理效果几乎无损,但耗时会缩短一倍左右,另外有几个点:
image = letterbox(image, 960, stride=64, auto=True)[0] 中stride指的是最大步长,yolov7-w6和yolov5s下采样多了一步,导致在8,16,32的基础上多了64的下采样步长
output = non_max_suppression_kpt(out, 0.25, 0.65, nc=1, nkpt=17, kpt_label=True) ,nc 和 kpt_label 等信息在netron打印模型文件时可以看到
所得到的onnx相比原半精度模型大了将近三倍,后续排查原因
yolov7-w6-pose极度吃显存,推理一张960×960的图像,需要2-4G的显存,训练更难以想象
本文仅做学术分享,如有侵权,请联系删文。
点击进入—>3D视觉工坊学习交流群
干货下载与学习
后台回复:巴塞罗那自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件
后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf
后台回复:3D视觉课程,即可学习3D视觉领域精品课程
3D视觉工坊精品课程官网:3dcver.com
1.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
2.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
3.国内首个面向工业级实战的点云处理课程
4.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
5.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
6.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
7.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)
16.透彻理解视觉ORB-SLAM3:理论基础+代码解析+算法改进
重磅!粉丝学习交流群已成立
交流群主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、ORB-SLAM系列源码交流、深度估计、TOF、求职交流等方向。
扫描以下二维码,添加小助理微信(dddvisiona),一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿,微信号:dddvisiona
3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看,3天内无条件退款
高质量教程资料、答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~