自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(35)
  • 收藏
  • 关注

原创 训练一个通用且高效的YOLO行人检测模型

本文介绍了训练高效行人检测YOLO模型的关键方法。重点分析了开源数据集(如COCO2017、CrowdHuman)存在的错标、漏标等问题,提出通过人工清洗和旋转增强等数据处理手段提升数据质量。训练采用了约11.3万张图像,包含COCO行人标签、CrowdHuman密集人群数据及业务数据等。实验对比了不同尺寸YOLOv8模型性能,并使用模型蒸馏优化小模型。结果表明,经过严格数据清洗和模型优化后,检测性能显著提升,为监控场景下的行人检测提供了实用解决方案。

2025-12-19 09:08:39 934 1

原创 基于关键点的行为识别(4)- 以摔倒检测为例,实现关键点检测到行为识别的完整流程

基于关键点的摔倒检测行为识别全流程实现。用YOLOv8s-pose关键点检测,改进ByteTrack目标跟踪,用PosePointNet行为识别。数据处理方法:混合不同模型(YOLOv8/11)和分辨率(640/800)的关键点数据增强训练集。针对开集分类问题,提出分阶段训练策略:先全量数据训练,再控制正负样本比例优化。最后详细说明了推理流程:关键点检测→目标跟踪→双端队列构建行为序列→模型推理。实验表明,仅需100个视频片段即可训练出有效模型,该方法可扩展至站立、行走等多种行为识别场景。

2025-12-17 14:43:19 1086

原创 基于关键点的行为识别(3)- 问题分析与算法设计

本文探讨了基于关键点的行为识别算法在边缘计算场景下的优化方案。针对传统图卷积方法(如ST-GCN)存在的部署难题,提出PosePointNet轻量化架构,在UCF101、HMDB51等数据集上达到SOTA效果。文章重点解决了三个核心问题:1)设计算子友好的标准卷积结构;2)开发检测框归一化等稳定化预处理方法;3)提出多尺度特征聚合策略。实验表明,该方法以最低计算成本(GFLOPs)取得优于PoseC3D等复杂模型的性能,特别适合安防等边缘场景的高帧率实时推理需求。

2025-12-17 09:33:16 994

原创 基于关键点的行为识别(2) - 动作识别/行为识别/视频分类数据集

本文介绍了五种常用的行为识别数据集:UCF101、HMDB51、NTU-RGB+D60/120、Kinetics400和UAVHuman。作者使用YOLO-pose和FasterRCNN+HRNet重新预测了关键点、置信度和检测框数据。文中分析了各数据集特点:UCF101存在多人干扰问题;HMDB51数据量较小;NTU数据集实验室环境较简单;Kinetics400规模最大但计算成本高;UAVHuman无人机视角独特适合论文研究。这些数据集将用于作者提出的PosePointNet行为识别算法测试。

2025-12-15 18:07:38 903

原创 基于关键点的行为识别(1)- 搭建ST-GCN(图卷积方法)的新训练框架

本文针对基于关键点的行为识别方法提出简化框架,解决了mmaction/mmpose/pyskl等工具在环境配置、代码冗余和部署上的问题。项目开源了ST-GCN/ST-GCN++/AAGCN/CTR-GCN等GCN模型的精简实现,仅依赖torch、numpy等基础库。在NTU-RGB+D60数据集上,ST-GCN++模型joint准确率达90.22%,bone准确率90.33%,2-stream融合达91.64%,优于原论文结果。文章详细介绍了数据处理、模型定义、训练测试等模块设计,并指出当前方法在实际落地中

2025-12-13 06:31:36 929

原创 训练一个通用且高效的YOLO-pose人体关键点检测模型

本文探讨了基于YOLO的2D人体姿态估计模型训练方法。通过分析开源数据集COCO-pose和MPII的标注质量问题,提出数据清洗和关键点映射方案,最终整合6万张高质量数据。实验表明,数据质量比模型结构改进更重要,仅用yolov8s-pose模型在15个关键点配置下就能达到良好效果。针对不同应用场景测试显示,该方案在常规视角表现优异,但在鱼眼、倒立等特殊场景仍需针对性数据增强。研究证实,相比模型优化,高质量标注数据对提升关键点检测性能更具决定性作用。

2025-12-12 13:58:35 1414

原创 YOLOv8源码修改(5)- YOLO知识蒸馏(下)设置蒸馏超参数:以yolov8-pose为例

本文探讨了YOLOv8知识蒸馏的实现与优化策略。作者以yolov8-pose为例,分析了影响蒸馏效果的6大因素:算法选择、超参设置、损失权重、数据质量、模型差异和实现细节。实验表明,AT蒸馏算法虽简单但效果突出,收敛快且资源占用少;MGD鲁棒性强,参数不敏感;CWD调优后效果最佳。作者建议将蒸馏损失初始比例控制在15%-25%,最终降至5%-15%,并提出了动态调整权重的方案。对于实际应用,推荐优先选择AT算法,其实现简单且效果稳定。文中还指出了多阶段混合蒸馏等未来优化方向。

2025-05-25 17:33:07 2236 1

原创 YOLOv8源码修改(5)- YOLO知识蒸馏(上)添加蒸馏代码:以yolov8-pose为例

本文实现ultralytics框架下的yolo知识蒸馏代码的添加,支持yolov3/v5/v6/v8/v9/v10/11等模型,同时支持cls/det/obb/pose/seg等任务。本文以具体实现yolov8-pose的知识蒸馏为例,给出了需要添加的代码。

2025-05-25 15:20:10 3053 29

原创 RK3588部署YOLOv8(2):OpenCV和RGA实现模型前处理对比

RK平台上有RGA (Raster Graphic Acceleration Unit) 加速,使用RGA可以减少资源占用、加速图片处理速度。因此,在部署YOLOv8是针对RGA和OpenCV的分别进行了实现,并对性能、速度和资源占用进行对比。

2025-03-07 15:58:01 2916

原创 RK3588部署YOLOv8(1):YOLOv8和YOLOv8-pose转ONNX及Python后处理代码实现

对YOLOv8和YOLOv8-pose,使用RKNN官方代码转ONNX,主要用于在RK3588上的模型部署,方便后续ONNX转RKNN,可以使用RK官方代码一键转换+部署。

2025-02-26 15:39:42 3224 6

原创 YOLOv8源码修改(4)- YOLOv8剪枝(实现任意YOLO模型的简单剪枝)

使用torch-pruning进行YOLO模型的剪枝,简单易操作,无需关注模型实现和剪枝算法。

2025-01-30 00:35:43 5072 23

原创 分类模型训练框架搭建(1):resnet18/50和mobilenetv2在CIFAR10上测试结果

用CIFAR10测试一下自己搭建的分类模型训练框架,包括基本训练、知识蒸馏、模型稀疏化、剪枝微调、模型量化。最终,ResNet18取得96%的分类准确率,且剪枝91%的ResNet18可以取得94%的准确率

2025-01-21 14:21:15 1479

原创 ONNX推理warning: TensorRT does not natively support INT64. Attempting to cast down to INT32.

只想用ONNX进行模型推理,加载时报Warning,加载模型时间也特别长。

2024-08-30 23:33:28 306

原创 YOLO后处理trick - 减少nms的计算次数、比较次数和空间消耗

减少YOLO后处理nms的计算和比较次数。优化1:将110,000次的比较优化到9,000次(Python实现和C++实现的对比,网上找的代码,如果是官方一点的,应该也有类似优化)。优化2:将O(NlgN) 的计算复杂度(排序比较+IoU比较)降到接近O(N)(实际效果可能更好,当然不排除特别极端情况下,也会变差,不过这是基于YOLO特性设计的,几乎不可能出现)。

2024-08-27 11:57:43 1133

原创 实时手势识别(2)- 基于关键点分类实现零样本图片的任意手势的识别

先使用YOLOv8检测手部区域,然后使用YOLOv8-pose对放大的手部区域检测关键点,最后使用PointNet分类关键点,可以实现对任意手势的高精度实时识别。对于非遮挡手势,仅需1W个参数,即可实现98%的准确率,极限情况下,仅需400个参数,可以达到80%的准确率。

2024-08-19 11:53:17 1724 4

原创 实时手势识别(1)- 基于手部检测+手部分类

利用YOLOv8获取手部区域,然后对手部区域进行分类,实现手势识别。本文使用检测+分类,对于一类手势只需200张训练图片,即可达到99%的准确率。在下一篇基于关键点+关键点分类,无需训练图片,即可实现对任意手势的识别,且达到99%的准确率。

2024-08-17 15:27:20 6151 9

原创 基于YOLOv8-pose的手部关键点检测(3)- 实现实时手部关键点检测

使用YOLOv8-m对图像进行手部检测,然后扩大检测框区域,并对该区域使用YOLOv8-s-pose使用关键点检测,实现实时的手部关键点检测。

2024-08-16 23:57:20 3180 5

原创 基于YOLOv8-pose的手部关键点检测(2)- 模型训练、结果分析和超参数优化

对YOLOv8-pose手部关键点检测模型进行训练,并分析训练结果,从而调优训练超参数。

2024-08-16 11:57:33 4007 17

原创 基于YOLOv8-pose的手部关键点检测(1)- 手部关键点数据集获取(数据集下载、数据清洗、处理与增强)

手部姿态估计、手势识别和手部动作识别等任务时,可以转化为对手部关键点的分布状态和运动状态的估计问题。本文主要给出手部关键点数据集获取的方式。总共获取三个数据集:handpose_v2、HaGRID-pose和hand_keypoint_26K。正样本总计:593,661张图片(53.33W张用于训练,6.04W张用于验证和测试)。

2024-08-14 01:15:22 6781 12

原创 基于YOLOv8的手部检测(2)- 模型训练、结果分析和超参数优化

对YOLOv8手部检测模型进行训练,并分析训练结果,从而调优训练超参数。

2024-08-13 16:14:36 2360 5

原创 基于YOLOv8的手部检测(1)- 手部数据集获取(数据集下载、数据清洗、处理与增强)

在进行手部姿态估计、手势识别时,需要先检测出手的位置。本文对网上公开的手部数据集进行获取、清洗、处理与数据增强,用于YOLO等目标检测网络的训练。

2024-08-12 11:52:07 9219 22

原创 YOLOv8-pose(2)- 绘制和使用姿态关键点

对姿态估计获取的关键点(不限于YOLOv8)进行可视化和使用(包括用于网络训练等)。

2024-07-22 00:52:46 9408 4

原创 YOLOv8-pose(1)- 关键点检测数据集格式详解+快速训练+预测结果详解

实现YOLOv8-pose的快速使用:yolov8-pose关键点检测数据集的格式、标注与迭代;实现训练一个yolov8-pose模型;输出测试结果与分析。

2024-07-20 03:58:03 29342 24

原创 YOLOv8-pose:官方预训练模型在COCO-pose上的自测结果

在COCO-pose数据集上,更完整的yolov8-pose结果,用于后续实验对比。

2024-07-10 10:08:49 1996 10

原创 COCO姿态检测标签转YOLO格式:用于YOLOv8关键点检测

将COCO-keypoints的标签文件转成YOLOv8的标签文件。

2024-07-05 14:39:06 3056 4

原创 COCO目标检测标签转YOLO格式+按需实现标签筛选

COCO标签转YOLO:将下载的训练集标签instances_train2017.json和验证集标签instances_val2017.json转成YOLO格式。

2024-07-05 09:30:53 2785

原创 一欧元滤波器:用于缓解YOLOv8-pose关键点抖动

使用一欧元滤波减少YOLOv8-pose姿态估计获取的关键点的抖动问题。

2024-06-27 10:11:13 1701 5

原创 deepsort修改(3):替换reid特征编码网络

使用paddleclas的pplcnetv2网络替换deepsort中的reid网络。

2024-06-05 14:09:03 2004 1

原创 deepsort修改(2):多类别追踪,id根据类别从1编号

原始deepsort主要用于行人、车辆追踪,因此不区分类别,只给出跟踪id。自己使用的场景中,存在不同类别的物体需要跟踪,希望能够对每一类物体的跟踪id,分别从0开始编号。

2024-06-05 12:12:28 1112 2

原创 deepsort修改(1):id跳变优化

思路:存在序列:1, 2, 3, 5, 8, 12...,如何将其修改成:1, 2, 3, 4, 5, 6, ...。本质上,实现的是:{1:1, 2:2, 3:3, 5:4, 8:5, 12:6...}这样一个映射。

2024-06-03 17:06:21 1914 5

原创 YOLOv8源码修改(3)-多个YOLOv8模型 +deepsort 实现多目标跟踪 and 修改原始deepsort结果,加入预测类别和置信度

使用YOLOv8+deep_sort实现多目标跟踪。YOLOv8官方仅提供了bot_sort和byte_tracker两种跟踪算法,而常用的deep_sort并未给出。即使给出,由于高度封装,高耦合度导致自定义使用跟踪结果困难。因此,将YOLOv8只作为检测器使用,再结合deep_sort实现多目标跟踪,并给出获取目标跟踪结果、可视化、保存推理文件等方法。

2024-05-27 01:15:08 3645 13

原创 YOLOv8源码修改(2)- 解耦检测推理类+融合多个YOLOv8模型的检测推理结果

实际工程中,一张图片可能需要经过几个检测网络,不同网络的配置会有差异,且可能只需获取部分预测类别,而YOLOv8高度封装,直接使用较为麻烦。因此,需要解耦YOLOv8检测的推理类,用其直接加载模型,并在不同模型获取部分结果后,融合多个模型的推理结果。

2024-05-26 23:29:18 2663

原创 YOLOv8源码修改(1)- DataLoader增加负样本数据读取+平衡训练batch中的正负样本数

实际工程中,仅仅使用采集到的数据(或者说单一的数据集)进行训练,会导致网络在真实未知的场景下,极其容易发生误检。因此,网络需要见识不同的场景数据才更具有鲁棒性。

2024-05-17 12:10:31 4531 18

原创 YOLOv8数据集构建:使用百度识图爬取相关图片

使用百度识图爬取YOLOv8数据集。

2024-04-24 18:06:05 1066 1

原创 Rerender A Video 复现

待补充。

2023-11-10 17:37:24 1124 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除