​KISS-ICP: 点到点ICP做对了也能实现简单准确且鲁棒的激光里程计

点击进入—>3D视觉工坊学习交流群

标题:KISS-ICP: In Defense of Point-to-Point ICP -- Simple, Accurate, and Robust Registration If Done the Right Way

作者:Vizzo et al., RAL'23, University of Bonn

论文: https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/vizzo2023ral.pdf

代码: https://github.com/PRBonn/kiss-icp

1 动机与贡献

现有很多LiDAR里程计都依赖于某种形式的ICP估计帧间位姿,例如CT-ICP, LOAM等。现有的系统设计需要对机器人的运动(CT-ICP)和环境的结构(LeGO-LOAM)有一些特定的假设。而且几乎没有系统能够不需要调参(例如特征提取、面特征拟合、法向量估计、畸变矫正)就能用于不同的场景、不同的LiDAR、不同的运动模式、以及不同种类的机器人(例如地面和空中机器人)。

与现有很多工作增加里程计的复杂度相反,本文通过去除大部分部件并专注于核心元素,回顾1992年最初提出的ICP方法,研究阻碍其泛化性能的根本原因,得到了一个简单且非常高效的系统,并且可以使用不同的LiDAR传感器在各种环境条件下运行(无人车、无人机、两轮车Segway、手持固态LiDAR)。

提出的里程计估计方法基于point-to-point ICP,结合了自适应阈值进行对应匹配、鲁棒核、简单但广泛适用的运动补偿方法和点云下采样策略。

和现有很多SLAM系统不同,本文的系统不用精巧的特征提取,学习方法,也不用回环检测。

整个系统参数较少,在大多数情况下甚至不需要调整到特定的LiDAR传感器。

不需要集成IMU信息,只需要从各种3D LiDAR传感器获得的3D点云数据,因此能够满足广泛的不同应用和操作条件。

系统运行速度比所有数据集中的传感器帧率都快,并且是为现实场景而设计的。

KISS-ICP (keep it small and simple):

  • 与SOTA里程计系统相当

  • 同一套参数可以用于不同的机器人、不同的环境和运动模式

  • 不依赖IMU或轮速计的高效运动补偿方法

c42fc6a91ccef9e593aee6a2598848d1.png

2 方法

激光里程计主要步骤:

  • 运动估计和运动补偿(畸变矫正)

  • 帧下采样

  • 使用自适应阈值估计scan到local map的对应关系,对可能的数据关联做限制,滤除可能的异常值

  • 用鲁棒的point-to-point ICP进行scan与local map的配准

  • 将下采样的scan更新到local map中

2.1 运动预测和帧畸变矫正

不使用IMU或轮速计,用恒速模型进行运动补偿,主要有两个原因:

  • 应用广泛,不需要其他传感器,也就不需要和其他传感器做时间同步

  • 对于获得LO的初始值和畸变矫正足够了,因为通常LiDAR频率在10Hz到20Hz(50ms~100ms),大多数情况下,加速度或者减速度在短时间内与恒速模型的差距相对较小

用前两帧的相对位姿预测当前帧与前一帧的相对位姿,t-1到t-2的相对位姿为:

efbf07cfe05d529111022efe701d0e6b.png

速度和角速度:

68dbb6f0c053893b909b3e04f328f2d8.png

畸变矫正(投影到扫描开始):

8d5a68aa02d0b13401c33f0a4940edfb.png

2.2 点云下采样

local map的voxel 大小是v,对于scan,先用alpha * v (0 < alpha <= v)的voxel大小进行下采样, 然后

用beta * v (1.0 <= beta <= 2.0)的voxel大小进行下采样,两次下采样的想法源于CT-ICP。

大多数体素下采样方法保留voxel的中心点,不一定位于原点云上,本文实验发现保留原点云的点效果要好一点,因此在实现中,保留第一个插入voxel里的点。

2.3 自适应阈值的scan到local map对应关系估计

用大小为v的voxel存储局部地图,每个voxel最多存N_max个点,scan配准到local map后,用估计的位姿将上述第一次下采样的点云加入到local map中,如果voxel超过了传感器最大距离r_max, 就从local map去除。

一般ICP方法都用某一最大距离范围(例如1m或2m)内的最近邻做数据关联,这个阈值的确定需要考虑初始位姿误差、动态物体种类和数量、以及传感器噪声等,通常是根据经验设定的。基于恒速运动预测模型,可以估计运动估计的初值与ICP纠正的偏差大小,但这个是不能提前知道的。直观地,可以观察机器人在该偏差上的大小的加速度,如果机器人没有加速,该偏差的大小会很小,接近0,ICP基本不需要做纠正。

将该信息集成到数据关联中,估计两帧之间关联点的距离:

ca557290937b6682fa3aa87c37afff54.png

2dc1dba43c8ea5df77d7ee5cd33d69fc.png

旋转部分的偏差对应在扫描最大距离上偏差的大小。

49486b41ce627b924e476033e87c2887.png

式(5)给出了点偏差的上界(根据三角不等式):

0aa4bcd964f2ff76fb65977551ecf280.png

为了计算t时刻的阈值,假设式(5)的值服从高斯分布,根据已有的轨迹,只考虑当偏差大于delta_min(恒速运动和真实运动相差较大)时,得到标准差:

575f0ba11fa2e65d4dfb854ce1ebac4e.png

646d95dc9862f38a5498f9cc28a6e386.png

只考虑偏差大于delta_min避免了由于机器人静止或者匀速运动很长时间使得标准差估计得太小。实验中将delta_min设为0.1m。最后估计的阈值设为

ca35c961344d36eefa480b9deee338b0.png

用于数据关联的最近邻搜索时的距离阈值。

2.4 通过鲁棒优化配准

先通过预测的相对位姿和上一帧的里程计位姿把点云转到全局坐标系(也可以是局部子图坐标系)

210772bcdbc1d324fa39ad8e8399c7c9.png

每次迭代时,点到点残差做ICP配准的优化问题为:

2bff9b2fa36cc1eeeb56e101f6d24659.png

rho是Geman-McClure鲁棒核函数,一种具有很强的外点剔除能力的M估计器:

1df12fc07d1885854d3e716ccabcdaaa.png

第j步迭代完后更新点云

02ca6ccf63911e6796815e4e3c6be102.png

然后重复迭代数据关联、优化,直到满足收敛条件。

最后里程计的位姿为:

22382450165c4564f5a23fe20af46823.png

式(5)中运动预测和ICP纠正之间的相对位姿为:

b22873530035c36274b27208d7a17fc7.png

通常ICP会设定一个最大迭代次数,或者加上迭代结果与最小变化量的比较,本文认为限制这些约束可能使ICP不一定能收敛到好的结果,而且可能会累积漂移。因此,本文的终止条件为迭代结果小于gamma,而限制迭代次数。

最后用ICP纠正后的位姿将第一次下采样的帧加入到local map。

算法的参数设定:

2abe508e4389a71d28bb1a93a6ca0b0a.png

r_max依赖于传感器种类。

3 实验

公开数据集对比:

08a108a403241996522071a5fe2f68f8.png

6317fe8b1857672e5a86746447132b09.png

c3ee4daa722b597b544129c642f0306e.png

运动补偿:

25bff25e55074883c30352443da35203.png

自适应数据关联阈值:

5968191be4d60b943e698d74f83ad686.png

本文仅做学术分享,如有侵权,请联系删文。

点击进入—>3D视觉工坊学习交流群

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

3D视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
2.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
3.国内首个面向工业级实战的点云处理课程
4.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
5.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
6.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
7.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

8.从零搭建一套结构光3D重建系统[理论+源码+实践]

9.单目深度估计方法:算法梳理与代码实现

10.自动驾驶中的深度学习模型部署实战

11.相机模型与标定(单目+双目+鱼眼)

12.重磅!四旋翼飞行器:算法与实战

13.ROS2从入门到精通:理论与实战

14.国内首个3D缺陷检测教程:理论、源码与实战

15.基于Open3D的点云处理入门与实战教程

16.透彻理解视觉ORB-SLAM3:理论基础+代码解析+算法改进

17.机械臂抓取从入门到实战

重磅!粉丝学习交流群已成立

交流群主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、ORB-SLAM系列源码交流、深度估计、TOF、求职交流等方向。

扫描以下二维码,添加小助理微信(dddvisiona),一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

2c8b1806764774c1ba7139d96588213b.jpeg

▲长按加微信群或投稿,微信号:dddvisiona

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看,3天内无条件退款

8408dfdc20baf4ea81788fb47364ae02.jpeg

高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值