前言
如何应用数据创造价值?或者说数据分析在应用层有哪些方向?
方向1:基于数据反馈,不断迭代产品和业务策略。
方向2:基于数据训练算法,实现机器自动化
无论是在产品和业务领域还是实际生活中,面对一个复杂任务,都需要将其拆解成更小、更易于管理的部分来简化执行过程。
本文整理汇总常用的9种拆解办法,在真实业务场景中需要灵活应用,拆解办法只要符合MECE法则即可。
一、一条法则:MECE法则
MECE法则(Mutually Exclusive Collectively Exhaustive),意思是“相互独立,完全穷尽”。它是由麦肯锡公司的巴巴拉·明托(Barbara Minto)在《金字塔原理》(The Minto Pyramid Principle)中提出,是一种分析问题的思维方式。
总的来讲,MECE法则有两条原则:
第一条是完整性,强调子项中不要漏掉某项,要保证完整性;
例如:若将“四边形”拆解为“正方形”、“长方形”、“梯形”是不符合MECC法则的,因为属于“四边形”的几何图形并不仅限于前述3种。
第二条是独立性,强调了子项之间要独立,不要有交叉重叠。
例如:若将“四边形”拆解为“正方形”、“长方形”、“矩形”是不符合MECC法则的,因为“矩形”已经包含了“正方形”、“长方形”,各子项之间并不相互独立。
二、九大方法
1流程拆解法
顾名思义,将流程按照事件、程序、顺序、环节拆解。适用于流程较长、环节较多的场景。
例如,消费者的网购流程可以拆解为: 看见广告→点击进入→浏览商品→点击购买→填写信息→下单→支付→确认收货。
2.二分法
把事物拆分为A与非A,二分法用于简化思维,适用于复杂事物的快速决策。例如:
A | 非A |
---|---|
男人 | 女人 |
国内 | 国外 |
堂食 | 外带 |
3.象限拆解法
常见的是使用二维四象限,将所要分析的信息归入象限中。根据其在象限中的位置进行归因分析、确定最优策略等。
图源:https://feixianguo.com/blog/detail/5341/
4.杜邦分析法
杜邦分析法(DuPont Analysis)是一个经典的财务分析方法。利用几种主要的财务比率之间的关系来综合地分析企业的财务状况。具体来说它是从财务角度评价企业绩效(公司盈利能力、股东收益回报水平)的方法。
核心思路就是把净资产收益率ROE层层分解,深入了解企业经营业绩。
图源:https://www.finebi.com/2021/cysjfx
5.AARRR
AARRR代表了五个关键的用户行为指标,是硅谷著名风险投资人Dave McClure于2007提出的,核心就是AARRR漏斗模型。用于衡量和指导初创企业或互联网产品的用户行为和产品的成长性。通常会用在流量监控、活动营销效果监控、app运营、商品活动分析、产品转化分析上,通过分析各个环节的转化率,从而优化运营。
指标 | 解释 |
---|---|
获取(Acquisition) | 用户从不同渠道来到你的产品 |
激活(Activation) | 用户在你的产品上完成了一个核心任务(并有良好体验) |
留存(Retention) | 用户回来继续不断的使用你的产品 |
收入(Revenue) | 用户在本产品上发生了可使你收益的行为(付费应用、应用内付费、以及广告) |
推荐(Referral) | 用户通过你的产品,推荐引导他人来使用你的产品 |
6.PEST
PEST分析法是从政治(Politics)、经济(Economic)、社会(Society)、技术(Technology)四个方面,把握宏观环境的现状及变化趋势,从而制定和调整测量。
PEST分析的运用领域有:公司战略规划、市场规划、产品经营发展、研究报告撰写。
下表是一个典型的PEST分析
7.RFM
RFM模型是通过一个客户数据库中3个指标来描述该客户价值状况的模型,这3个指标分别表示为:
指标 | 解释 |
---|---|
R(Recency)近度 | 客户最近一次交易时间的间隔 |
F(Frequency)频度 | 客户在最近一段时间内交易的次数 |
M(Monetary)额度 | 客户最近一段时间内交易的金额 |
8.SWOT
SWOT是一种分析模型,将与研究对象密切相关的各种主要内部优势、内部劣势和外部机会和外部威胁等,通过调查列举出来,并依照矩阵形式排列,然后用系统分析的思想,把各种因素相互匹配起来加以分析,从中得出一系列相应的结论,而结论通常带有一定的决策性。
- S (strengths)是优势
- W (weaknesses)是劣势
- O (opportunities)是机会
- T(threats)是威胁
SWOT矩阵:
如何理解SWOT矩阵?
9.5W1H
5W1H(WWWWWH)分析法也叫六何分析法,是一种思考方法,也可以说是一种创造技法。在企业管理、日常工作生活和学习中得到广泛的应用。
指标 | 解释 |
---|---|
Who | 分析谁?确定分析主题 |
Where | 取哪里的数据?进行数据集成 |
When | 取什么时间段的数据? |
What | 用什么分析方法? |
Why | 是什么原因导致的问题? |
How | 怎么做?如何提高效率?如何实施? |
总结
常用拆解办法有9种,在真实业务场景中需要灵活应用。还是那句话:拆解办法只要符合MECE法则即可。