【目标检测论文阅读笔记】Feature-Enhanced CenterNet for Small Object Detection in Remote Sensing Images

Abstract:

        与 anchor-based基于锚点的检测器相比,anchor-free无锚点检测器 具有灵活性和较低计算复杂度的优点。然而,在复杂的遥感场景中,受限的几何尺寸、目标的弱特征 以及 广泛分布的与目标特征相似的环境元素 使得小目标检测成为一项具有挑战性的任务。为了解决这些问题,我们提出了一种名为 FE-CenterNet 的无锚检测器,它可以在复杂的遥感场景中准确检测车辆等小物体。首先,我们设计了一个由特征聚合结构(FAS)和注意力生成结构(AGS)组成的 特征增强模块(FEM)该模块通过 挖掘多尺度上下文信息 并 结合坐标注意机制有助于抑制场景中虚警的干扰,从而提高对小目标的感知。同时,为了满足小目标的高定位精度要求,我们提出了一种新的损失函数在推理过程中不需要额外的计算和时间成本。最后,为验证算法性能并为后续研究提供基础,我们建立了包含各种目标和复杂场景的昏暗小型车辆数据集(DSVD)。实验结果表明,所提出的方法比主流目标检测器性能更好。具体来说,我们方法的平均精度 (AP) 指标比原始 CenterNet 高 7.2%,仅降低 1.3 FPS


1. Introduction

        遥感图像中的自动目标检测在商业和军事领域引起了越来越多的关注,可广泛应用于空中侦察、交通监控和区域监视应用。然而,由于遥感图像分辨率和质量的限制,大多数感兴趣的目标如车辆[1-4]表现出以下特征:尺寸小,特征暗淡模糊,对比度低[5,6] 。此外,独特的遥感成像系统导致场景的复杂性 和 目标方位的多变性,给检测任务带来了极大的困难。因此,研究一种有效的遥感图像小目标检测方法具有重要意义。在本文中,我们将面积小于 32×32 像素的物体定义为小目标[7],主要关注遥感图像中的小型车辆检测

        卷积神经网络 (CNN) [8] 可以通过自适应学习代表性特征来实现端到端检测,而无需手工制作特征。典型的检测网络大致可以分为两类:anchor-based 和 anchor-free检测器。基于锚点的检测器,例如 Faster-RCNN [9] 和 YOLO [10],需要根据数据集中 目标的纵横比 对锚点参数进行微调,以实现有希望的性能。然而,不同遥感场景中目标的长宽比显得如此多样化,这使得调整锚点的参数变得困难且耗时[11]。无需考虑anchor的选择,anchor-free检测器 独立于anchor的超参数,降低了算法的计算复杂度。此外,anchor-free 检测器依赖关键点 从高分辨率特征图中检测目标,容易捕获小范围内的目标

        CenterNet [12]作为anchor-free检测器的典型代表,通过提取的特征图直接预测物体的中心点。与其他方法相比,CenterNet 简洁的目标检测框架 使其具有在检测精度和速度之间取得平衡的潜力。此外,CenterNet 使用从输入图像中四倍下采样的高分辨率特征进行预测,其优势在于可以实现对小而密集目标的理想检测性能。然而,由于场景的多样性和复杂性 以及 小目标的单调外观很难提取鲁棒的特征来充分表示,因为 CenterNet 的性能在很大程度上依赖于获取的特征图,这在一定程度上限制了其在复杂遥感场景中的应用性能

        在本文中,我们通过设计一个特征增强模块(FEM)来帮助网络增强实用特征,同时抑制不必要的细节,从而提出特征增强中心网(FE-CenterNet)。同时,我们在CenterNet框架中采用了新的损失函数 保证小目标的定位精度。所有上述改进都是在没有许多额外参数和计算成本的情况下实现的。此外,为了评估遥感图像中小目标检测器的性能,我们构建了一个由各种物体和复杂场景组成的昏暗小型车辆数据集(DSVD)。实验证明,FE-CenterNet 在小目标检测方面具有显着优势,并在 DSVD 上实现了最先进的性能。

我们工作的主要贡献如下:

anchor-free无锚检测器,在复杂的遥感场景中对小目标检测具有出色的性能。

• 特征增强模块,通过挖掘多尺度特征 和 集成注意力机制,极大地提高了小目标的特征提取和表示能力。

已建立的小型和昏暗模糊的车辆数据集,有助于评估小型物体检测算法的性能。

        本文的其余部分安排如下。在第 2 节介绍了小目标检测的相关工作之后,我们在第 3 节详细阐述了所提出的 FE-CenterNet 体系结构。在第 4 节,我们简要介绍了构建的小型和昏暗模糊的数据集,并描述为比较所提出方法和典型方法的性能而进行的实验。最后,我们在第 4 节进行总结和归纳。


2. Related Works

        随着深度学习技术的快速发展,基于卷积神经网络(CNN)的遥感目标检测逐渐受到关注。众所周知,主流方法分为基于锚点和无锚点的框架。本节介绍两大品类的主要发展趋势,分析存在的问题。在此基础上,我们 说明了选择无锚框架的原因 以及所提出的遥感图像小目标检测方法的解决方案。


2.1. Anchor-Based Framework for Object Detection

        2012年后,CNN的兴起将目标检测推向了一个巨大的进步。通过自动挖掘重要特征,可以缓解基于手工特征描述符的准确性差和冗余计算的问题。基于锚点的检测器 使用 数量、大小和纵横比的超参数 对从各种锚点生成的不同候选对象 进行预测和分类。无论候选者是否产生,基于锚点的框架分为两阶段和一阶段检测器。前者使用区域建议网络(RPN)[9]提取感兴趣区域(ROI)作为第一阶段,然后进行精确的边界框回归和对象分类。

        R-CNN [13] 作为最早的两阶段检测器,首先使用选择性搜索方法生成候选,然后使用 CNN 提取特征。问题在于需要对所有候选者单独进行特征提取,这是一个反复耗时的过程。为了解决上述问题,Fast-RCNN [14] 直接从整体图像中提取特征,然后将其映射到感兴趣区域。同时,为了减少传统区域提议算法所消耗的时间,Faster-RCNN [9] 引入了 RPN 来实现基于深度学习的端到端目标检测,进一步简化了检测流水线。后续的改进主要出现在Faster-RCNN的模块基础上。 Mask RCNN [15]

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值