- 博客(348)
- 收藏
- 关注
原创 SCI论文解读复现|目录一览表
此栏目解读SCI、EI等英文论文解读,梳理并复现改进创新点,帮助大家将改进点运用于自己的目标检测场景中,助力发论文。
2023-05-27 19:43:56 2359
原创 YOLOv10/YOLOv9/YOLOv8/YOLOv7/YOLOv5系列改进| 目录一览表
YOLO系列算法改进方法(2024.6.2更新)
2022-11-29 18:48:13 21943 3
原创 YOLOv11/10/8算法改进【NO.152】引入用于与 Transformer 进行多尺度通道交叉融合和一个子模块,用于引导融合的多尺度通道信息有效
一种CTrans 模块是 U-Net 跳跃连接的替代方案,它由一个子模块组成,用于与 Transformer 进行多尺度通道交叉融合(名为 CCT)和一个子模块 Channel-wise Cross-Attention(名为 CCA),用于引导融合的多尺度通道信息有效。
2024-10-27 20:30:21 27
原创 YOLOv11/10/8算法改进【NO.151】引入用于密集图像预测的频率感知特征融合
提出了频率感知特征融合 (FreqFusion),集成了自适应低通滤波器 (ALPF) 发生器、偏移发生器和自适应高通滤波器 (AHPF) 发生器。ALPF 发生器预测空间变化的低通滤波器,以衰减对象内的高频分量,从而减少上采样期间的类内不一致。
2024-10-27 12:21:37 627
原创 YOLOv11/10/8算法改进【NO.150】引入用于医学图像分割的协同多注意力转换器
一种基于 Transformer 的高效架构,它融合了多种注意力机制,以增强小肿瘤和器官的分割。SMAFormer 可以捕获局部和全局特征以进行医学图像分割。该架构由两个关键组件组成
2024-10-27 12:18:30 777
原创 YOLOv11/10/8算法改进【NO.149】引入新的现代卷积网络系列——多阶门控聚合网络
近年来在多阶深度神经网络 (DNN) 中的博弈论交互揭示了现代卷积神经网络的感知瓶颈,其中富有表现力的交互具有没有随着内核大小的增加而进行有效编码。为了应对这一挑战——lenge,我们提出了一个新的现代卷积网络系列,称为 MogaNet
2024-10-27 12:15:23 698
原创 YOLOv11/10/8算法改进【NO.148】引入用于遥感图像语义分割的CNN 和多尺度 Transformer 融合网络
提出了一种新的编码器-解码器结构化语义分割网络,命名为 CNN 和多尺度变压器融合网络 (CMTFNet),用于提取和融合高分辨率遥感图像的局部信息和多尺度全局上下文信息。
2024-10-27 12:11:45 39
原创 YOLOv11/10/8算法改进【NO.147】引入卷积加法自注意力视觉变压器实现高效的移动应用程序——一种新的加法模拟larity 函数
一种新的加法模拟larity 函数遵循此范式并呈现名为 Convolutional Additive Token 的 cient 实现混频器 (CATM)。这种简化导致了显著的计算开销中的归纳。
2024-10-27 12:07:43 276
原创 YOLOv11/10/8算法改进【NO.146】引入具有简化线性注意和渐进的高效变压器重新参数化的批量归一化
变压器已成为基础架构自然语言和计算机sion 任务。然而,高计算成本使得在资源上部署变得相当具有挑战性 -约束设备。本文研究了高效的计算瓶颈模块transformer 的 Alpha 层,即归一化层和 atten-tion 模块。,提出了一种新的方法名为 PRepBN 以逐步替换Layer-Norm 与训练中重新参数化的 BatchNorm -正在。此外,我们提出了一种简化的线性注意 (SLA) 模块,简单而有效tive 实现强大的性能。
2024-10-27 10:17:43 808
原创 YOLOv11/10/8算法改进【NO.145】引入目标分割领域算法中的重新思考图像去雾网络思想
采用目标分割的算法改进思路来跨领域改进目标检测算法。
2024-10-27 10:11:28 1031
原创 YOLOv11/10/8算法改进【NO.144】引入线性可变形卷积,它为卷积内核提供了任意数量的参数和任意采样的形状,为网络开销和性能之间的权衡提供了更丰富的选择
尽管可变形卷积 (Deformable Conv) 解决了标准卷积的固定采样问题,但参数的数量也趋于平方增长。针对上述问题,本文探讨了线性可变形卷积 (LDConv),它为卷积内核提供了任意数量的参数和任意采样的形状,为网络开销和性能之间的权衡提供了更丰富的选择。
2024-10-27 10:05:25 24
原创 YOLOv11/10/8算法改进【NO.143】引入根据热传导构建视觉模型——受热传导物理原理的启发,其基本思想是将图像块概念化为热源,并将其相关性的计算建模为热能的扩散
一种新颖的视觉骨干模型,可同时实现高计算效率和全局感受野
2024-10-27 09:42:13 129
原创 【目标检测论文解读复现NO.39】基于改进 YOLOv8 的轻量级复杂环境苹果叶片病害检测方法
基于改进 YOLOv8 的轻量级复杂环境苹果叶片病害检测方法
2024-10-19 11:00:32 505
原创 YOLOv10/8算法改进【NO.139】借鉴RCS-YOLO算法改进
RCS和一种RCS的单点聚合(RCS- osa),将特征级联和计算效率结合起来,以提取更丰富的信息并减少时间消耗。
2024-10-04 15:44:58 453
原创 YOLOv8算法改进【NO.138】基于细节增强卷积改进YOLO算法
基于细节增强卷积改进YOLO算法:一种由细节增强卷积(DEConv)和内容引导注意力(CGA)组成的细节增强注意力块(DEAB),以增强特征学习,提高去雾性能
2024-10-04 12:40:44 236
原创 YOLOv10算法改进【NO.137】使用卷积神经网络的小波池化改进YOLOv10n的上采样和下采样
使用卷积神经网络的小波池化改进YOLOv10n的上采样和下采样
2024-10-03 19:59:09 437
原创 YOLOv10算法改进【NO.136】使用retentive Networks Meet Vision Transformers改进主干网络
使用retentive Networks Meet Vision Transformers改进主干网络
2024-10-03 12:00:16 153
原创 英文论文SCI 解读复现【NO.22】Fabric Defect Detection in Real World Manufacturing UsingDeep Learning
SCI论文复现:使用深度学习在实际制造中检测织物缺陷
2024-09-29 22:55:52 701
原创 RT-DETR算法改进【NO.2】结合最新的CVPR2023年Fasternet网络模块
DETR结合最新的CVPR2023年Fasternet网络模块
2024-06-02 07:25:59 474
原创 RT-DETR算法改进【NO.1】借鉴CVPR2024中的StarNet网络StarBlock改进算法
借鉴CVPR2024中的StarNet网络StarBlock改进RT-DETR算法
2024-05-29 07:20:16 795
原创 YOLOv9/YOLOv8算法改进【NO.135】借鉴CVPR2024中的StarNet网络星形操作将输入映射到高维非线性特征空间的能力改进算法
借鉴CVPR2024中的StarNet网络星形操作将输入映射到高维非线性特征空间的能力改进算法
2024-05-26 08:08:51 739
原创 YOLOv9/YOLOv8算法改进【NO.133】2024年最新MobileNetV4轻量化算法作为YOLO算法的主干特征提取网络
2024年最新MobileNetV4轻量化算法作为YOLO算法的主干特征提取网络
2024-05-23 07:37:04 717
原创 YOLOv8算法改进【NO.132】利用HCANet中具有全局和局部信息的注意力机制CAFM进行DEA-Net中content-guided attention fusion
利用HCANet中具有全局和局部信息的注意力机制CAFM对C2f进行DEA-Net中content-guided attention fusion
2024-05-22 13:01:35 1587
原创 YOLOv9/YOLOv8算法改进【NO.130】采用DEA-Net网络中的内容引导注意力(CGA)改进特征融合网络Neck
采用DEA-Net网络中的内容引导注意力(CGA)改进特征融合网络Neck
2024-05-15 21:29:57 295
RSOD目标检测数据集
2023-01-05
NWPU VHR-10(YOLO格式且已划分好数据集)
2023-01-04
NEU-DET钢材表面缺陷数据集
2023-01-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人