- 博客(365)
- 收藏
- 关注

原创 SCI论文解读复现|目录一览表
此栏目解读SCI、EI等英文论文解读,梳理并复现改进创新点,帮助大家将改进点运用于自己的目标检测场景中,助力发论文。
2023-05-27 19:43:56
2628

原创 YOLOv10/YOLOv9/YOLOv8/YOLOv7/YOLOv5系列改进| 目录一览表
YOLO系列算法改进方法(2024.6.2更新)
2022-11-29 18:48:13
23207
3
原创 YOLOv11/10/8算法改进【NO.162】引入用于医学图像分割的高效多尺度卷积注意力
跨领域创新,采用目标分割领域模块进行改进YOLO算法,进行创新。
2025-04-15 21:10:56
597
1
原创 学习经验分享【39】YOLOv12——2025 年 2 月 19 日发布的以注意力为核心的实时目标检测器
提出了一个以注意力机制为核心的 YOLO 框架,即 YOLOv12,它在利用注意力机制性能优势的同时,能够达到与之前基于 CNN 的模型相当的速度
2025-02-22 16:08:58
1079
原创 YOLOv11/10/8算法改进【NO.160】引入多分支辅助特征金字塔网络的多功能颈部的新型目标检测框架
路径聚合特征金字塔网络(PAFPN)在 YOLO 检测器中得到广泛应用。然而,它无法同时高效且自适应地整合高级语义信息与低级空间信息。在本文中,我们提出了一种名为 MAF - YOLO 的新模型,这是一种具有名为多分支辅助特征金字塔网络(MAFPN)的多功能颈部的新型目标检测框架。在 MAFPN 中,浅层辅助融合(SAF)模块旨在将骨干网络的输出与颈部相结合,保留最佳水平的浅层信息以促进后续学习。同时,深度嵌入颈部的高级辅助融合(AAF)模块向输出层传递更广泛多样的梯度信息。
2024-12-22 08:18:14
1019
1
原创 YOLOv11/10/8算法改进【NO.159】卷积加性自注意力视觉 Transformer,以在移动应用中实现效率和性能之间的平衡。
卷积加性自注意力视觉 Transformer,以在移动应用中实现效率和性能之间的平衡。引入了卷积加性自注意力(CAS)块混合架构,并在每个块中使用 CATM。
2024-12-19 21:31:18
96
原创 YOLOv11/10/8算法改进【NO.158】使用一种名为 PRepBN 的新方法,在训练过程中逐步用重新参数化的 BatchNorm 替代 LayerNorm
一种名为 PRepBN 的新方法,在训练过程中逐步用重新参数化的 BatchNorm 替代 LayerNorm。
2024-12-18 22:24:13
309
原创 YOLOv11/10/8算法改进【NO.157】引入MetaFormer
ConvFormer 优于 ConvNeXt。将常见的深度可分离卷积作为令牌混合器,名为 ConvFormer 的模型(可视为纯 CNN)优于强大的 CNN 模型 ConvNeXt。
2024-12-17 21:54:01
197
原创 YOLOv11/10/8算法改进【NO.156】使用基于廉价卷积算子的新型图像恢复网络
CNN 在图像恢复方面的潜力,并表明所提出的简单卷积网络架构(称为 ConvIR)的性能可以与 Transformer 同类架构相当或更好。通过重新审视高级图像恢复算法的特点,我们发现了导致恢复模型性能改进的几个关键因素。这促使我们开发一种基于廉价卷积算子的新型图像恢复网络。这促使我们开发一种基于廉价卷积算子的新型图像恢复网络。
2024-12-15 22:28:47
68
原创 英文论文SCI 解读复现【NO.23】GFS-YOLO11: A Maturity Detection Model forMulti-Variety Tomato
GFS-YOLO11: 多品种番茄成熟度检测模型
2024-11-17 22:11:43
816
原创 YOLOv11/10/8算法改进【NO.152】引入用于与 Transformer 进行多尺度通道交叉融合和一个子模块,用于引导融合的多尺度通道信息有效
一种CTrans 模块是 U-Net 跳跃连接的替代方案,它由一个子模块组成,用于与 Transformer 进行多尺度通道交叉融合(名为 CCT)和一个子模块 Channel-wise Cross-Attention(名为 CCA),用于引导融合的多尺度通道信息有效。
2024-10-27 20:30:21
247
原创 YOLOv11/10/8算法改进【NO.151】引入用于密集图像预测的频率感知特征融合
提出了频率感知特征融合 (FreqFusion),集成了自适应低通滤波器 (ALPF) 发生器、偏移发生器和自适应高通滤波器 (AHPF) 发生器。ALPF 发生器预测空间变化的低通滤波器,以衰减对象内的高频分量,从而减少上采样期间的类内不一致。
2024-10-27 12:21:37
810
原创 YOLOv11/10/8算法改进【NO.150】引入用于医学图像分割的协同多注意力转换器
一种基于 Transformer 的高效架构,它融合了多种注意力机制,以增强小肿瘤和器官的分割。SMAFormer 可以捕获局部和全局特征以进行医学图像分割。该架构由两个关键组件组成
2024-10-27 12:18:30
901
原创 YOLOv11/10/8算法改进【NO.149】引入新的现代卷积网络系列——多阶门控聚合网络
近年来在多阶深度神经网络 (DNN) 中的博弈论交互揭示了现代卷积神经网络的感知瓶颈,其中富有表现力的交互具有没有随着内核大小的增加而进行有效编码。为了应对这一挑战——lenge,我们提出了一个新的现代卷积网络系列,称为 MogaNet
2024-10-27 12:15:23
751
原创 YOLOv11/10/8算法改进【NO.148】引入用于遥感图像语义分割的CNN 和多尺度 Transformer 融合网络
提出了一种新的编码器-解码器结构化语义分割网络,命名为 CNN 和多尺度变压器融合网络 (CMTFNet),用于提取和融合高分辨率遥感图像的局部信息和多尺度全局上下文信息。
2024-10-27 12:11:45
262
原创 YOLOv11/10/8算法改进【NO.147】引入卷积加法自注意力视觉变压器实现高效的移动应用程序——一种新的加法模拟larity 函数
一种新的加法模拟larity 函数遵循此范式并呈现名为 Convolutional Additive Token 的 cient 实现混频器 (CATM)。这种简化导致了显著的计算开销中的归纳。
2024-10-27 12:07:43
361
原创 YOLOv11/10/8算法改进【NO.146】引入具有简化线性注意和渐进的高效变压器重新参数化的批量归一化
变压器已成为基础架构自然语言和计算机sion 任务。然而,高计算成本使得在资源上部署变得相当具有挑战性 -约束设备。本文研究了高效的计算瓶颈模块transformer 的 Alpha 层,即归一化层和 atten-tion 模块。,提出了一种新的方法名为 PRepBN 以逐步替换Layer-Norm 与训练中重新参数化的 BatchNorm -正在。此外,我们提出了一种简化的线性注意 (SLA) 模块,简单而有效tive 实现强大的性能。
2024-10-27 10:17:43
867
原创 YOLOv11/10/8算法改进【NO.145】引入目标分割领域算法中的重新思考图像去雾网络思想
采用目标分割的算法改进思路来跨领域改进目标检测算法。
2024-10-27 10:11:28
1111
原创 YOLOv11/10/8算法改进【NO.144】引入线性可变形卷积,它为卷积内核提供了任意数量的参数和任意采样的形状,为网络开销和性能之间的权衡提供了更丰富的选择
尽管可变形卷积 (Deformable Conv) 解决了标准卷积的固定采样问题,但参数的数量也趋于平方增长。针对上述问题,本文探讨了线性可变形卷积 (LDConv),它为卷积内核提供了任意数量的参数和任意采样的形状,为网络开销和性能之间的权衡提供了更丰富的选择。
2024-10-27 10:05:25
108
原创 YOLOv11/10/8算法改进【NO.143】引入根据热传导构建视觉模型——受热传导物理原理的启发,其基本思想是将图像块概念化为热源,并将其相关性的计算建模为热能的扩散
一种新颖的视觉骨干模型,可同时实现高计算效率和全局感受野
2024-10-27 09:42:13
205
原创 【目标检测论文解读复现NO.39】基于改进 YOLOv8 的轻量级复杂环境苹果叶片病害检测方法
基于改进 YOLOv8 的轻量级复杂环境苹果叶片病害检测方法
2024-10-19 11:00:32
812
原创 YOLOv10/8算法改进【NO.139】借鉴RCS-YOLO算法改进
RCS和一种RCS的单点聚合(RCS- osa),将特征级联和计算效率结合起来,以提取更丰富的信息并减少时间消耗。
2024-10-04 15:44:58
844
原创 YOLOv8算法改进【NO.138】基于细节增强卷积改进YOLO算法
基于细节增强卷积改进YOLO算法:一种由细节增强卷积(DEConv)和内容引导注意力(CGA)组成的细节增强注意力块(DEAB),以增强特征学习,提高去雾性能
2024-10-04 12:40:44
417
原创 YOLOv10算法改进【NO.137】使用卷积神经网络的小波池化改进YOLOv10n的上采样和下采样
使用卷积神经网络的小波池化改进YOLOv10n的上采样和下采样
2024-10-03 19:59:09
575
原创 YOLOv10算法改进【NO.136】使用retentive Networks Meet Vision Transformers改进主干网络
使用retentive Networks Meet Vision Transformers改进主干网络
2024-10-03 12:00:16
273
RSOD目标检测数据集
2023-01-05
NWPU VHR-10(YOLO格式且已划分好数据集)
2023-01-04
NEU-DET钢材表面缺陷数据集
2023-01-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人