- 博客(80)
- 资源 (7)
- 收藏
- 关注
原创 旋转对称物体分析工具KASAL(Rotational Symmetry),支持BOP Challenge的格式
项目链接: https://github.com/WangYuLin-SEU/KASAL。
2025-08-07 00:10:00
1208
原创 Autodl的配置教程
本文介绍了Autodl平台实例管理和镜像配置的主要功能。内容包括:实例的开关机状态管理、命名规范、无卡模式费用说明;镜像保存与共享的注意事项;文件存储区域限制;实例创建时的计费方式选择、数据盘扩容和镜像类型推荐(特别推荐支持EGL的镜像);VSCode远程连接方法;以及阿里云盘与Autodl文件系统的交互操作。重点强调了实例操作时的状态要求(如关机状态下才能更换镜像)、不同存储区域的使用限制,以及各类功能的使用成本考量。
2025-07-27 13:44:44
779
原创 imgaug numpy 1.20 解决方案
这个问题主要是由于numpy在1.20以后bool变成了bool_,而现有的官方版本的imgaug则是根据1.20版本之前的numpy编译的。这导致,如果系统安装的numpy是1.20以后,imgaug调用numpy中是不包括bool,就会报错。
2024-07-26 14:41:35
694
原创 三维渲染背面剔除
背面剔除是三维渲染中常用的一种优化技术,通过剔除当前视角下不可见的多边形,显著提升渲染效率和性能。虽然背面剔除技术有一定的局限性,但在大多数闭合物体的渲染场景中,它是不可或缺的优化手段。掌握并正确应用背面剔除技术,可以在各类三维渲染应用中获得更好的性能和效果。
2024-06-22 00:20:13
583
原创 三维渲染计算阴影
在三维渲染中,阴影计算是提升图像真实感和美观度的重要环节。不同的阴影计算方法各有优缺点,选择合适的阴影技术需要根据具体的应用场景和性能要求进行权衡。通过合理组合和优化这些技术,可以实现高质量的阴影效果,为三维场景增加深度感和真实感。
2024-06-22 00:16:02
1232
原创 三维渲染中的散光圆
散光圆(Circle of Confusion,CoC)是三维渲染和摄影中的一个重要概念,尤其在景深(Depth of Field,DoF)效果的生成中起着关键作用。通过理解和计算散光圆的大小,能够在图像和视频中实现逼真的模糊效果,提高视觉真实感和美观度。在三维渲染中,模拟真实世界中的景深效果需要考虑散光圆的影响。通过计算散光圆的大小,可以对图像中的不同区域进行模糊处理,使焦点区域清晰,焦外区域模糊。在计算机图形学中,通过后处理技术,可以在渲染后的图像中添加景深效果。
2024-06-21 14:35:08
676
原创 随机梯度下降(SGD)
SGD是一种高效、简单且强大的优化算法,通过随机选择样本进行梯度计算和参数更新,加速了大规模数据集上的模型训练。尽管存在收敛速度慢和参数更新震荡等问题,但通过动量法、RMSProp、AdaGrad和Adam等改进版本,这些问题得到了有效缓解和解决,使得SGD及其变种成为深度学习和其他机器学习任务中的主流优化方法。
2024-06-17 22:57:09
1269
原创 Adam优化算法
Adam优化算法通过结合动量和自适应学习率的优点,提供了一种高效、稳定、适应性强的参数优化方法。尽管存在一些缺点和挑战,但通过各种改进版本,Adam在深度学习领域仍然是非常受欢迎的选择。其在各种应用场景中的成功应用,证明了其在处理复杂优化问题时的有效性。
2024-06-17 22:56:30
1106
原创 blender bpy将顶点颜色转换为UV纹理vertex color to texture
安装blender的bpy,不需要额外再安装blender软件。在python控制台中直接输入pip install bpy即可。
2024-06-13 01:24:03
1386
原创 平均召回(Average Recall,AR)概述
在深度学习中,平均召回(Average Recall, AR)是一个衡量模型在不同阈值下的召回率的综合指标,特别常用于目标检测任务。召回率(Recall)指的是模型正确检测出的正样本占所有正样本的比例。换句话说,召回率评估了模型识别所有正样本的能力。平均召回(AR)是对不同阈值下的召回率进行平均得出的指标。在目标检测中,模型通常会在不同的置信度阈值下做出预测。通过在多个阈值下计算召回率并取其平均值,可以更全面地评估模型的性能。平均召回(AR)在目标检测任务中是评估模型性能的重要指标。
2024-06-10 01:40:58
2473
1
原创 深度学习中域泛化的简要概述
域泛化(Domain Generalization)是一种机器学习方法,旨在使训练模型能够在未见过的目标域(Target Domain)上表现良好。与域适应不同,域泛化在训练过程中并没有接触目标域的数据,而是通过利用多个源域(Source Domains)的数据来提升模型的泛化能力。以下是对域泛化的详细介绍,包括其基本概念、工作流程、主要方法、优势和挑战,以及主要应用领域。域泛化是深度学习中的一种重要技术,旨在训练能够在未见过的目标域上表现良好的模型。
2024-06-05 14:24:07
2045
原创 深度学习中域适应的简要概述
域适应(Domain Adaptation)是一种迁移学习技术,旨在解决源域(Source Domain)和目标域(Target Domain)之间分布差异带来的问题。通过在源域数据上训练模型,并使其在目标域数据上表现良好,域适应可以在缺乏目标域标注数据的情况下提升模型的泛化能力和性能。以下是对域适应的详细介绍,包括其基本概念、工作流程、主要方法、优势和挑战,以及主要应用领域。域适应是一种重要的迁移学习技术,通过对齐源域和目标域的特征分布,提升模型在目标域上的性能。
2024-06-05 14:23:34
2477
原创 pytorch onnx ncnn间的关系
PyTorch:用于模型开发和训练,提供强大的灵活性和丰富的库支持。ONNX:充当一个中间层格式,促进不同深度学习框架之间的模型互操作性和标准化。NCNN:专注于高效的模型推理,特别是在移动和嵌入式设备上。工作流程示例在 PyTorch 中开发和训练模型。将 PyTorch 模型导出为 ONNX 格式。使用 NCNN 工具将 ONNX 模型转换为 NCNN 格式。将 NCNN 模型部署到移动设备或嵌入式设备上进行高效推理。
2024-06-02 23:52:21
950
原创 深度学习训练时混合精度的作用
在深度学习训练过程中,混合精度(Mixed Precision)是指同时使用不同的数值精度(如16位浮点数和32位浮点数)来进行计算。
2024-06-01 17:50:25
1132
原创 深度学习中测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
2024-06-01 17:47:53
3176
原创 meshlab: pymeshlab调用OpenGL渲染(snapshot屏幕截图)
本文所给出代码仅为参考,禁止转载和引用,仅供个人学习。中的obj_000001.ply。
2024-05-20 00:22:56
789
原创 Blender色彩管理的关键概念和使用方法
Blender使用OpenColorIO (OCIO) 进行色彩管理。OCIO是一种开源色彩管理框架,广泛应用于视觉效果和动画制作中。Blender的色彩管理系统主要用于确保在不同设备和显示器上颜色的一致性,并在渲染和后期处理过程中准确表示色彩。
2024-05-19 01:06:37
2386
原创 meshlab: pymeshlab的ICP点云配准(icp between meshes)
实际应用中,很少能遇到使用meshlab的点云配准,但对于一些三维重建、位姿估计等应用场景,ICP是必不可少的函数。第二段代码的目的是加载平移旋转前后的两个物体模型并调用ICP算法来微调物体。本文所给出代码仅为参考,禁止转载和引用,仅供个人学习。第一段代码的目的是旋转、平移物体以模拟两个不对齐的物体模型。中的obj_000001.ply。
2024-05-18 00:48:19
1196
原创 meshlab点云配准
MeshLab提供了多种点云配准算法,包括ICP(最近点迭代法)、全局配准、特征匹配等。根据具体的配准需求和点云数据的特点,选择合适的配准算法。: 在进行配准之前,通常需要对点云数据进行预处理,如去除噪声、下采样、滤波等操作,以提高配准的准确性和稳定性。: 完成配准操作后,可以对配准结果进行评估,检查点云之间的对齐程度和匹配质量,以确保配准结果满足需求。: 配准过程中可能需要调整一些参数,如迭代次数、匹配阈值等,以获得更好的配准效果。: 最后,将配准后的点云数据保存到文件中,以备后续使用或进一步处理。
2024-05-18 00:25:42
747
原创 meshlab的功能概述
MeshLab支持多种三维模型格式的导入和导出,包括PLY、STL、OBJ等常见格式,用户可以方便地将模型从一个格式转换为另一个格式,以满足不同软件和平台的需求。: MeshLab允许用户对三维网格进行各种操作,如平滑、滤波、重建、剖分等。: MeshLab支持点云数据的导入、处理和可视化,用户可以对点云数据进行滤波、采样、拟合等操作,也可以将点云数据转换为三维网格模型进行进一步处理。: 用户可以在网格模型上应用纹理贴图,并进行纹理坐标编辑、纹理重映射等操作,以实现更加逼真的渲染效果。
2024-05-17 00:26:28
1199
原创 CG渲染中材质的作用
例如,金属材质通常具有较高的反射率,可以产生明亮的高光,而粗糙的表面则会散射光线,产生柔和的阴影。总的来说,材质在 CG 渲染中扮演着塑造物体外观、模拟光照和质感、增强视觉效果等方面的关键角色,是产生逼真和吸引人的图像的重要组成部分。通过选择不同的材质属性,可以实现各种各样的视觉效果,如金属、塑料、玻璃等。:一些材质属性可以控制物体的折射和透明度,例如玻璃材质会使光线产生折射效果,而透明的材质会允许光线穿过物体。:通过调整材质的纹理、凹凸度等属性,可以模拟物体的真实质感,使其看起来更加逼真和立体。
2024-05-16 00:48:48
395
原创 meshlab: pymeshlab沿着椭圆赤道投影展开当前网格的几何图形并保存(geometric cylindrical unwrapping)
本文所给出代码仅为参考,禁止转载和引用,仅供个人学习。中的obj_000001.ply。
2024-05-16 00:47:59
435
原创 meshlab: pymeshlab合并多个物体模型并保存(flatten visible layers)
本文所给出代码仅为参考,禁止转载和引用,仅供个人学习。中的obj_000001.ply和obj_000009.ply。合并多个物体模型并不是布尔运算,而是简单的叠加。
2024-05-15 01:25:52
1933
2
原创 blender渲染时导致cpu高负载的可能因素
Blender 的 Cycles 渲染引擎是一种基于光线追踪的渲染引擎,它通过追踪光线在场景中的传播来生成图像。这个过程涉及大量的数学计算和光线追踪,需要大量的 CPU 计算资源。:除了渲染计算之外,Blender 中的物理模拟(如流体、粒子、布料等)也可能会导致 CPU 高负载。这些模拟需要进行大量的计算,特别是在模拟复杂的物理现象时。在多线程渲染中,CPU 的负载通常会更高,因为它同时处理多个渲染任务。:当渲染高分辨率的图像或动画时,会增加渲染所需的计算量,从而导致 CPU 负载增加。
2024-05-15 01:18:34
1676
原创 三维渲染深度测试
在三维渲染中,深度测试是一种重要的技术,用于解决场景中不同物体之间的遮挡关系,并确保正确的像素绘制顺序。: 如果要绘制的像素的深度值小于深度缓冲区中对应位置的值,则说明该像素位于场景中更接近相机的位置,应该被绘制到屏幕上。: 对于每个要绘制的像素,渲染器将根据其在三维空间中的位置和相机的视角来计算其深度值,并将该深度值与深度缓冲区中的对应位置的值进行比较。: 如果像素被绘制到屏幕上,则将其深度值写入深度缓冲区,更新深度缓冲区中对应位置的值为该像素的深度值。表示深度值小于当前深度缓冲区值时才通过深度测试。
2024-05-14 00:28:04
313
2017-2019东南大学研究生学位英语试卷(秋).zip
2021-12-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人