026、二维数组的花式遍历技巧(labuladong)

二维数组的花式遍历技巧

基于labuladong的算法网站,二维数组的花式遍历技巧

1、顺/逆时针旋转矩阵

力扣第48题,旋转图像
在这里插入图片描述
操作步骤:

  • 将矩阵按照左上到右下的对角线进行镜像对称;
  • 再对矩阵的每一行进行反转;
  • 结果即为顺时针旋转90度的结果;

(1)顺时针旋转矩阵

[48]旋转图像

class Solution {
    public void rotate(int[][] matrix) {
        reverse(matrix);
        rowReverse(matrix);
    }

    // 将矩阵从左上到右下进行翻转
    void reverse(int[][] matrix) {
        for (int i = 0; i < matrix.length; i++) {
            for (int j = i + 1; j < matrix.length; j++) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = temp;
            }
        }
    }

    // 将矩阵的每一行所有元素进行翻转
    void rowReverse(int[][] matrix) {
        for (int i = 0; i < matrix.length; i++) {
            int left = 0, right = matrix.length - 1;
            while (left < right) {
                int temp = matrix[i][left];
                matrix[i][left] = matrix[i][right];
                matrix[i][right] = temp;
                left++;
                right--;
            }
        }
    }
}

重点:

  • 难点在于将row变成column,将column变成row;
  • 只有按照对角线这个样子操作才可以完成上述要求;

(2)逆时针旋转矩阵

如何将矩阵逆时针旋转90°呢?

  • 将矩阵按照从右上到左下对称翻转矩阵;
  • 再逐行翻转矩阵即可得到;
class Solution {
    // 逆时针旋转
    public void rotate(int[][] matrix) {
        reverse(matrix);
        rowReverse(matrix);
    }

    // 将矩阵从右上到左下进行翻转
    void reverse(int[][] matrix) {
        for (int i = 0; i < matrix.length - 1; i++) {
            for (int j = 0; j < matrix.length - 1 - i; j++) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[matrix.length - 1 - j][matrix.length - 1 - i];
                matrix[matrix.length - 1 - j][matrix.length - 1 - i] = temp;
            }
        }
    }

    // 将矩阵的每一行所有元素进行翻转
    void rowReverse(int[][] matrix) {
        for (int i = 0; i < matrix.length; i++) {
            int left = 0, right = matrix.length - 1;
            while (left < right) {
                int temp = matrix[i][left];
                matrix[i][left] = matrix[i][right];
                matrix[i][right] = temp;
                left++;
                right--;
            }
        }
    }
}

2、矩阵的螺旋遍历

(1)螺旋矩阵

力扣第54题,螺旋矩阵

解题的核心思路是:

  • 使用四个变量确定为遍历元素的边界;
  • 随着螺旋遍历,缩紧四个边界,直到螺旋遍历完整个数组;
[54]螺旋矩阵

class Solution {
    public List<Integer> spiralOrder(int[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        // 四个指针
        int upper = 0, left = 0;
        int low = m - 1, right = n - 1;
        // 返回的结果
        List<Integer> result = new LinkedList<>();
        while (result.size() < m * n) {
            // 左到右
            if (upper <= low) {
                for (int i = left; i <= right; i++) {
                    result.add(matrix[upper][i]);
                }
                upper++;
            }
            // 上到下
            if (left <= right) {
                for (int i = upper; i <= low; i++) {
                    result.add(matrix[i][right]);
                }
                right--;
            }
            // 右到左
            if (upper <= low) {
                for (int i = right; i >= left; i--) {
                    result.add(matrix[low][i]);
                }
                low--;
            }
            // 下到上
            if (left <= right) {
                for (int i = low; i >= upper; i--) {
                    result.add(matrix[i][left]);
                }
                left++;
            }
        }
        return result;
    }
}

(2)螺旋矩阵Ⅱ

力扣第59题,螺旋矩阵Ⅱ

[59]螺旋矩阵 II

class Solution {
    public int[][] generateMatrix(int n) {
        int[][] res = new int[n][n];
        int left = 0, upper = 0;
        int low = n - 1, right = n - 1;
        int count = 0;
        while (count < n * n) {
            // 左到右
            if (upper <= low) {
                for (int i = left; i <= right; i++) {
                    res[upper][i] = ++count;
                }
                upper++;
            }
            // 上到下
            if (left <= right) {
                for (int i = upper; i <= low; i++) {
                    res[i][right] = ++count;
                }
                right--;
            }
            // 右到左
            if (upper <= low) {
                for (int i = right; i >= left; i--) {
                    res[low][i] = ++count;
                }
                low--;
            }
            // 下到上
            if (left <= right) {
                for (int i = low; i >= upper; i--) {
                    res[i][left] = ++count;
                }
                left++;
            }
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值