算法学习笔记Day6——二维数组的花式遍历

引言:一些操作的最佳算法可能不符合我们的直观思路,但是它对计算机来说是有效的,对于我们来说匪夷所思、八竿子打不着的操作可能正好就能够得出符合要求的操作。这其中有很深的数学变换思维,需要勤于思考,多加练习。

1、 顺/逆时针旋转矩阵

例题1:旋转图像

思路1:外层不变,内层和为n-1,发现这个方法要点是发现旋转的规律,并且把矩阵进行分块,对一个块里面元素进行遍历。

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        //两重循环,到n/2和(n+1)/2
        for(int i  =0; i< n/2; i++){
            for(int j  =0; j <(n+1)/2; j++){
                int tmp = matrix[i][j];
                //外层不变,内层为n+1
                matrix[i][j] = matrix[n-1-j][i];
                matrix[n-1-j][i] = matrix[n-1-i][n-1-j];
                matrix[n-1-i][n-1-j] = matrix[j][n-1-i];
                matrix[j][n-1-i] = tmp;

            }
        }
    }
};

思路2:先上下翻转,然后主对角线反转 = 顺时针旋转90度, 逆时针则相反

class Solution {
public:

    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
       for(int i = 0; i< n/2; i++){
            for(int j = 0; j < n ;j++){
                swap(matrix[i][j], matrix[n-1-i][j]);
            }
       }
       for(int i = 0; i< n; i++){
            for(int j = 0; j < i; j++){
                swap(matrix[i][j], matrix[j][i]);
            }
       }
    }
};

2、 矩阵的螺旋遍历

总结:矩阵的螺旋遍历的通用模板,设置上下左右四个边界,然后用四个for循环去遍历,i的起始就是螺旋的方向,比如left -> right, up -> down,每铺一层,那一层的变量就对应的增减。

例题2:螺旋矩阵

代码1:边界重新定义法

class Solution {
public:
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
        vector<int> ans;
        if(matrix.empty()) return ans;
        int m = matrix.size();
        int n = matrix[0].size();
        int upper = 0, left = 0;
        int down = m-1, right = n-1; //都是可到达的,所以后面都是<= 、 >=
        while(true){
            //在什么边界上面走,matrix其中一个下标就是谁
            for(int i  =left; i<= right; i++){
                ans.push_back(matrix[upper][i]);
            }
            if(++upper > down){
                break;
            }
            for(int i  =upper; i<= down; i++){
                ans.push_back(matrix[i][right]);
            }
            if(--right < left){
                break;
            }
            for(int i  = right; i >= left; i--){
                ans.push_back(matrix[down][i]);
            }
            if(--down < upper){
                break;
            }
            for(int i  =down; i >= upper; i--){
                ans.push_back(matrix[i][left]);
            }
            if(++left > right){
                break;
            }
        }
        return ans;
    }
};

例题3:螺旋矩阵 II

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> matrix(n, vector<int>(n));
        int upper = 0, left = 0;
        int right = n-1, down = n-1;
        int cnt = 1;
        while(true){
            for(int i = left; i <= right; i++){
                matrix[upper][i]  = cnt++;
            }
            if(++upper > down){
                break;
            }
            for(int i = upper; i <= down; i++){
                matrix[i][right]  = cnt++;
            }
            if(--right < left){
                break;
            }
            for(int i = right; i >= left; i--){
                matrix[down][i]  = cnt++;
            }
            if(--down < upper){
                break;
            }
            for(int i = down; i >= upper; i--){
                matrix[i][left]  = cnt++;
            }
            if(++left > right){
                break;
            }
        }
        return matrix;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值