P6306 「Wdsr-1」小铃的书 思维题

这篇博客探讨了一种解决数列中寻找特定计数规律的算法。通过将数列元素拆分为多个部分,并在指定进制下进行不进位加法,可以找到不满足倍数条件的数。博主分享了当k=2时的特殊情况,以及推广到一般情况的解决方案。代码实现中使用了快速读取和分块处理,确保了在大数据量下的效率。
摘要由CSDN通过智能技术生成

题目传送门

真的不知道是什么类型的题所以说成思维题。。

Description

给定两个数 n n n k k k 及一个数列,求出该数列中哪一个数出现的次数不是 k k k 的倍数。(保证只有一个)

Solution

有一个显然易见的结论:当 k = 2 k=2 k=2 时,结果相当于全部异或一遍,能获得 25 25 25 分的好成绩。

我们将这个结论推广一下,答案即为在 k k k 进制下做一遍不进位加法,时间复杂度为 O ( n log ⁡ k a i ) O(n \log_k a_i ) O(nlogkai) ,能得 75 75 75 分。

正解我感觉蛮奇怪 妙的。

将每一个 a i a_i ai 分成 4 4 4 块,每块是 2 16 2^{16} 216 (多余的就忽略),在每一块中,因为规模小,我们可以暴力枚举不为 k k k 的倍数的数。

最后注意一下 1 0 7 10^7 107 的数据需要快读。

Code

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,k,ai,s1[70000],s2[70000],s3[70000],s4[70000],ans;
long long qread(){
  long long w=1,c,ret;
  while((c=getchar())> '9'||c< '0')
  w=(c=='-'?-1:1); ret=c-'0';
  while((c=getchar())>='0'&&c<='9')
  ret=ret*10+c-'0';
  return ret*w;
}
signed main(){
	scanf("%lld%lld",&n,&k);
	while(n--){
		ai=qread();
		++s1[ai>>48];
		++s2[ai>>32&((1<<16)-1)];
		++s3[ai>>16&((1<<16)-1)];
		++s4[ai&((1<<16)-1)];
	}
//	cout<<s1[0]%k<<endl;
	for(int i=0;i<=((1<<16)-1);++i){
//		cout<<i<<endl;
		if(s1[i]%k){
			ans|=(int)(i<<48);
			break;
		}
	}
		
	for(int i=0;i<=(1<<16)-1;++i)
		if(s2[i]%k!=0){
			ans|=(int)(i<<32);
			break;
		}
	for(int i=0;i<=(1<<16)-1;++i)
		if(s3[i]%k!=0){
			ans|=(int)(i<<16);
			break;
		}
	for(int i=0;i<=(1<<16)-1;++i)
		if(s4[i]%k!=0){
			ans|=(int)i;
			break;
		}
	printf("%lld\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值