真的不知道是什么类型的题所以说成思维题。。
Description
给定两个数 n n n 和 k k k 及一个数列,求出该数列中哪一个数出现的次数不是 k k k 的倍数。(保证只有一个)
Solution
有一个显然易见的结论:当 k = 2 k=2 k=2 时,结果相当于全部异或一遍,能获得 25 25 25 分的好成绩。
我们将这个结论推广一下,答案即为在 k k k 进制下做一遍不进位加法,时间复杂度为 O ( n log k a i ) O(n \log_k a_i ) O(nlogkai) ,能得 75 75 75 分。
正解我感觉蛮奇怪 妙的。
将每一个 a i a_i ai 分成 4 4 4 块,每块是 2 16 2^{16} 216 (多余的就忽略),在每一块中,因为规模小,我们可以暴力枚举不为 k k k 的倍数的数。
最后注意一下 1 0 7 10^7 107 的数据需要快读。
Code
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,k,ai,s1[70000],s2[70000],s3[70000],s4[70000],ans;
long long qread(){
long long w=1,c,ret;
while((c=getchar())> '9'||c< '0')
w=(c=='-'?-1:1); ret=c-'0';
while((c=getchar())>='0'&&c<='9')
ret=ret*10+c-'0';
return ret*w;
}
signed main(){
scanf("%lld%lld",&n,&k);
while(n--){
ai=qread();
++s1[ai>>48];
++s2[ai>>32&((1<<16)-1)];
++s3[ai>>16&((1<<16)-1)];
++s4[ai&((1<<16)-1)];
}
// cout<<s1[0]%k<<endl;
for(int i=0;i<=((1<<16)-1);++i){
// cout<<i<<endl;
if(s1[i]%k){
ans|=(int)(i<<48);
break;
}
}
for(int i=0;i<=(1<<16)-1;++i)
if(s2[i]%k!=0){
ans|=(int)(i<<32);
break;
}
for(int i=0;i<=(1<<16)-1;++i)
if(s3[i]%k!=0){
ans|=(int)(i<<16);
break;
}
for(int i=0;i<=(1<<16)-1;++i)
if(s4[i]%k!=0){
ans|=(int)i;
break;
}
printf("%lld\n",ans);
return 0;
}