离散数学知识点整理

集合的基本概念

定义:不能精确定义。一些对象的整体就构成了集合,这些对象被称为元素或成员。

集合的表示

列举法

列举法是一种外延表示法

注意:

集合的元素是无序的

集合的元素是彼此不同的

描述法

描述法是一种内涵表示法

文氏图

利用平面上的点来做成对集合的图解方法。

一般使用平面上的方形或圆形表示集合,使用小圆点来表示集合的元素


数的集合

N:自然数
Z或I:整数
Q:有理数
R:实数
C:复数

集合与集合之间的关系

相等

A = B ⇔ ∀ x ( x ∈ B ↔ x ∈ A ) A = B \Leftrightarrow \forall x\left(x \in B \leftrightarrow x \in A \right) A=Bx(xBxA)
A = B ⇔ ( A ⊆ B ∧ B ⊆ A ) A = B \Leftrightarrow (A \subseteq B \wedge B \subseteq A) A=B(ABBA)

子集

A ⊆ B A \subseteq B AB 称为B是A的子集,或说B包含于A,或说A包含B。
A ⊆ B ⇔ ∀ x ( x ∈ A → x ∈ B ) A \subseteq B \Leftrightarrow \forall x (x \in A \rightarrow x \in B) ABx(xAxB)

子集的性质

A ⊆ A A \subseteq A AA
若 A ⊆ B 且 B ⊆ C , 则 A ⊆ C 若A \subseteq B 且 B \subseteq C, 则 A \subseteq C ABBC,AC

真子集

A ⊂ B ⇔ A ⊆ B ∧ A ≠ B A \subset B \Leftrightarrow A \subseteq B \wedge A \neq B ABABA=B

真子集的性质

若 A ⊂ B 且 B ⊂ C , 则 A ⊂ C 若A \subset B 且 B \subset C, 则 A \subset C ABBC,AC

空集

没有任何元素的集合是空集,记作 ⊘ \oslash

定理1:

对任意集合 A A A, ⊘ ⊆ A \oslash \subseteq A A

推论:

空集是唯一的

全集

若讨论的所有集合都是某个集合的子集,则称这个集合为全集,记作 E E E

全集是相对的

n元集

含有n个元素的集合成为n元集

∣ A ∣ |A| A表示集合中元素的个数,称为A的基数
A 是 n 元集 ⇔ ∣ A ∣ = n A是n元集 \Leftrightarrow |A| = n An元集A=n

幂集

A的全体子集组成的集合,成为A的幂集,记作 p ( A ) p(A) p(A) 2 A 2^A 2A
p ( A ) = x ∣ x ⊆ A p(A) = {x|x \subseteq A} p(A)=xxA

幂集计数问题

∣ A ∣ = n ⇒ ∣ P ( A ) ∣ = 2 n |A| = n \Rightarrow |P(A)| = 2 ^ n A=nP(A)=2n

集合的运算

交集

A ∩ B = { ( x ∈ A ) ∧ ( x ∈ B ) } A \cap B = \{(x \in A) \wedge (x \in B)\} AB={(xA)(xB)}

交集的性质

若 A ⊆ B , 则 A ∩ C ⊆ A ∩ B 若A \subseteq B, 则 A \cap C \subseteq A \cap B AB,ACAB
A ∩ B ⊆ A , A ∩ B ⊆ B A \cap B \subseteq A,A \cap B \subseteq B ABA,ABB

互不相交

A 1 , A 2 , . . . , A n A_1, A_2,...,A_n A1,A2,...,An是n个集合,若对于任意 i ≠ j i\neq j i=j,都有 A i ∩ B i = ⊘ A_i \cap B_i = \oslash AiBi=,则说他们互不相交。

并集

A ∪ B = { x ∣ x ∈ A ∨ x ∈ B } A \cup B = \{x| x \in A \vee x \in B \} AB={xxAxB}

并集的性质

若 A ⊆ B ,则 A ∪ C ⊆ B ∪ C 若A \subseteq B, 则A \cup C \subseteq B \cup C AB,则ACBC
A ⊆ A ∪ B , B ⊆ A ∪ B A \subseteq A \cup B,B \subseteq A \cup B AAB,BAB

相对补集

A − B = { x ∣ x ∈ A ∧ x ∉ B } A - B = \{x| x \in A \wedge x \notin B\} AB={xxAx/B}

相对补集的性质

A − B ⊆ A A - B \subseteq A ABA
A − B = ⊘ ⇔ A ⊆ B ⇔ A ∪ B = B ⇔ A ∩ B = A A - B = \oslash \\ \Leftrightarrow A \subseteq B \\ \Leftrightarrow A \cup B = B \\ \Leftrightarrow A \cap B = A AB=ABAB=BAB=A

绝对补

∼ A = E − A \sim A = E - A A=EA ,E是全集, A ⊆ E A\subseteq E AE

对称差

A ⊕ B = { x ∣ ( x ∈ A ∧ x ∉ B ) ∨ ( x ∉ A ∧ x ∈ B ) } A\oplus B = \{x| (x\in A \wedge x \notin B) \vee (x \notin A \wedge x \in B)\} AB={x(xAx/B)(x/AxB)}
A ⊕ B = ( A − B ) ∪ ( B − A ) = ( A ∪ B ) − ( A ∩ B ) A \oplus B = (A - B) \cup (B - A) = (A \cup B)-(A \cap B) AB=(AB)(BA)=(AB)(AB)

广义交和广义补

设A是集合, A中的元素的元素构成的集合成为A的广义交,记为 ∪ A \cup A A

设A是非空集合,A的所有元素的公共元素构成的集合成为A的广义补

1. ∪ { ⊘ , { ⊘ } } = { ⊘ } ∩ { ⊘ , { ⊘ } } = ⊘ ∪ { ⊘ , A } = A ∩ { ⊘ , A } = ⊘ 1.\cup\{\oslash, \{\oslash\}\} = \{\oslash\} \\ \cap\{\oslash, \{\oslash\}\} = \oslash \\ \cup\{\oslash, A\} = A \\ \cap\{\oslash, A\} = \oslash 1.{,{}}={}{,{}}={,A}=A{,A}=

优先级

两个集合可以由集合运算符连接构成新集合,如 A ∩ B A\cap B AB

两个集合可以有关系运算符连接构成一个命题,如 A ∩ B ⊆ A A \cap B \subseteq A ABA

这种命题可以有逻辑连接词连接构成复合命题,如 A ⊆ B ∧ A ≠ B A \subseteq B \wedge A\neq B ABA=B

两个命题可以有逻辑关系符连接,如 A = B ⇒ A ⊆ B A = B \Rightarrow A \subseteq B A=BAB


集合运算符:一元运算符 ∼ A , p ( A ) , ∪ A , ∩ B \sim A, p(A), \cup A, \cap B A,p(A),A,B

优先于集合运算符:二元运算符 − , ∪ , ∩ , ⊕ -, \cup, \cap, \oplus ,,,

优先于集合关系符: = , ⊆ , ⊂ , ∈ =, \subseteq, \subset, \in =,,,

优先于逻辑联结词:一元连接词 ¬ \neg ¬

优先于逻辑联结词:二元连接词 ∧ , ∨ , ⇒ , ← , ⇔ \wedge ,\vee ,\Rightarrow ,\leftarrow ,\Leftrightarrow ,,,,

优先于逻辑关系符: ⇔ , ⇒ \Leftrightarrow ,\Rightarrow ,

有穷集的计数(容斥原理)

设S为有穷集, P 1 , P 2 , . . . p m P1, P2,...p_m P1,P2,...pm是m个性质.S中的任何元素x或者具有性质Pi,或者不具有性质Pi,两种情况必居其一,令Ai表示S中具有性质Pi的元素构成的子集,则S中不具有性质p1,p2,…,pm的元素个数为:
A 1 ∪ A 2 ∪ A 3 ∪ . . . ∪ A m = Σ A i − Σ A i ∩ A j + Σ A i ∩ A j ∩ A k − . . . . . . + ( − 1 m − 1 A 1 ∩ A 2 ∩ . . . . ∩ A m ) A_1 \cup A_2 \cup A_3 \cup... \cup A_m \\ = \Sigma A_i - \Sigma A_i \cap A_j + \\ \Sigma A_i \cap A_j \cap A_k -......+ \\ ({-1}^{m-1}A_1 \cap A_2 \cap .... \cap A_m) A1A2A3...Am=ΣAiΣAiAj+ΣAiAjAk......+(1m1A1A2....Am)

集合恒等式

集合运算律

幂等律

A ∪ A = A A \cup A = A AA=A
A ∩ A = A A \cap A = A AA=A

交换律

A ∪ B = B ∪ A A \cup B = B \cup A AB=BA
A ∩ B = B ∩ A A \cap B = B \cap A AB=BA

结合律

( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) (A \cup B) \cup C = A \cup (B \cup C) \\ (A \cap B) \cap C = A \cap (B \cap C) (AB)C=A(BC)(AB)C=A(BC)

分配律

A ∩ ( B ∪ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A \cap (B \cup C) = (A \cup B) \cap (A \cup C) \\ A \cup (B \cap C) = (A \cup B) \cap (A \cup C) A(BC)=(AB)(AC)A(BC)=(AB)(AC)

吸收律

A ∪ ( A ∩ B ) = A A ∩ ( A ∪ B ) = A A \cup (A \cap B) = A \\ A \cap (A \cup B) = A A(AB)=AA(AB)=A

双重否定律

∼ ∼ A = A \sim \sim A = A ∼∼A=A

德·摩根律

∼ ( A ∩ B ) = ∼ A ∪ ∼ B \sim (A \cap B) = \sim A \cup \sim B (AB)=∼AB
∼ ( A ∪ B ) = ∼ A ∩ ∼ B \sim (A \cup B) = \sim A \cap \sim B (AB)=∼AB

德·摩根律相对形式

A − ( B ∪ C ) = ( A − B ) ∩ ( A − C ) A - (B \cup C) = (A - B) \cap (A - C) A(BC)=(AB)(AC)
A − ( B ∩ C ) = ( A − B ) ∪ ( A − C ) A - (B \cap C) = (A - B) \cup (A - C) A(BC)=(AB)(AC)

零律

A ∪ E = E A ∩ ⊘ = ⊘ A \cup E = E\\ A \cap \oslash = \oslash AE=EA=

同一律

A ∪ ⊘ = A A ∩ E = A A \cup \oslash = A \\ A \cap E = A A=AAE=A

排中律

A ∪ ∼ A = E A \cup \sim A = E AA=E

矛盾律

A ∩ ∼ A = ⊘ A \cap \sim A = \oslash AA=

全补律

∼ ⊘ = E \sim \oslash = E =E
∼ E = ⊘ \sim E = \oslash E=

补交转换律

A − B = A ∩ ∼ B A - B = A \cap \sim B AB=AB

对称差的性质

交换律

A ⊕ B = B ⊕ A A \oplus B = B \oplus A AB=BA

结合律

A ⊕ ( B ⊕ C ) = ( A ⊕ B ) ⊕ C A \oplus (B \oplus C) = (A \oplus B) \oplus C A(BC)=(AB)C

分配律

注意:对称差只对交集有分配律
A ∩ ( B ⊕ C ) = ( A ∩ B ) ⊕ ( A ∩ C ) A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C) A(BC)=(AB)(AC)

消去律

( A ⊕ B = A ⊕ C ) ⇔ B = C (A \oplus B = A \oplus C) \Leftrightarrow B = C (AB=AC)B=C

对称差与补

∼ ( A ⊕ B ) = ∼ A ⊕ B = A ⊕ ∼ B \sim (A \oplus B) = \sim A \oplus B = A \oplus \sim B (AB)=∼AB=AB

其他性质

A ⊕ ⊘ = A , A ⊕ E = ∼ A A ⊕ A = ⊘ , A ⊕ ∼ A = E A \oplus \oslash = A, A \oplus E = \sim A\\ A \oplus A = \oslash, A \oplus \sim A = E A=A,AE=∼AAA=,AA=E

演算法

逻辑演算法

A ⊆ B A \subseteq B AB

证明:
∀ x ∈ A , ⇒ . . . ⇒ x ∈ B \forall x \in A,\\ \Rightarrow ...\\ \Rightarrow x \in B xA,...xB

A = B A = B A=B

证明:
∀ x , x ∈ A ⇔ . . . ⇔ x ∈ B \forall x, x \in A \\ \Leftrightarrow ... \\ \Leftrightarrow x \in B x,xA...xB

集合演算法

A = B A = B A=B
格式1

A = . . . . = B A\\ =....\\ =B\\ A=....=B

格式2

( ⊆ ) A ⊆ . . . ⊆ B (\subseteq)\\ A\\ \subseteq ... \\ \subseteq B \\ ()A...B
( ⊇ ) . . . A ⊇ B A = B (\supseteq) \\ ...\\ A \supseteq B \\ A = B ()...ABA=B

A ⊆ B A \subseteq B AB
格式1

A ⊆ . . . ⊆ B A \\ \subseteq ... \\ \subseteq B A...B

格式2

A ∩ B ( 或 A ∪ B ) = . . . = A ( 或 B ) A \cap B (或 A \cup B) \\ = ... \\ = A(或 B) AB(AB)=...=A(B)
说明:利用 A ∩ B = A ⇔ A ⊆ B A ∪ B = B ⇔ A ⊆ B A − B = ⊘ ⇔ A ⊆ B \\A \cap B = A \Leftrightarrow A \subseteq B\\A \cup B = B \Leftrightarrow A \subseteq B\\A - B = \oslash \Leftrightarrow A \subseteq B AB=AABAB=BABAB=AB
这三条性质极其重要

序偶

序偶的定义

两个具有固定次序的个体组成一个序偶
< a , b > = { { a } , { a , b } } <a, b> = \{\{a\}, \{a, b\}\} <a,b>={{a},{a,b}}
其中,a是第一元素, b是第二元素

序偶相等

相等判定: < a , b > = < c , d > ⇔ a = c ∧ b = d <a, b> = <c, d> \Leftrightarrow a = c \wedge b = d <a,b>=<c,d>⇔a=cb=d

有序性: a ≠ b ⇒ < a , b > ≠ < b , a > a \neq b \Rightarrow <a, b> \neq <b, a> a=b⇒<a,b>=<b,a>

有序三元组: < a , b , c > = < < a , b > , c > <a, b, c> = <<a, b>, c> <a,b,c>=<<a,b>,c>
有序n元组同理

笛卡尔积

笛卡尔积定义

令A和B是任意两个集合,若序偶的第一个成员是A中的元素,第二个成员是B中的元素,所有这些序偶组成的集合被称为集合A和集合B的笛卡尔积卡氏积

记作: A × B A \times B A×B
A × B = { < x , y > ∣ x ∈ A ∧ y ∈ B } A \times B = \{<x, y>|x \in A \wedge y \in B\} A×B={<x,y>xAyB}

笛卡尔积元素个数

有限集笛卡尔积元素个数的关系是:

∣ A ∣ = n , ∣ B ∣ = m , 则 ∣ A × B ∣ = n × m = ∣ B × A ∣ |A| = n, |B| = m, 则 |A \times B| = n \times m = |B \times A| A=n,B=m,A×B=n×m=B×A

笛卡尔积的性质

非交换

A × B ≠ B × A A \times B \neq B \times A A×B=B×A

非结合

( A × B ) × C ≠ A × ( B × C ) (A \times B) \times C \neq A \times (B \times C) (A×B)×C=A×(B×C)

分配律

A × ( B ∪ C ) = ( A × B ) ∪ ( A × C ) A × ( B ∩ C ) = ( A × B ) ∩ ( A × C ) A \times (B \cup C) = (A \times B) \cup (A \times C) \\ A \times (B \cap C) = (A \times B) \cap (A \times C) A×(BC)=(A×B)(A×C)A×(BC)=(A×B)(A×C)

消去律

设 A , B , C 是任意集合, C ≠ ⊘ 设A, B, C是任意集合, C \neq \oslash ABC是任意集合,C=
A × B ⊆ A × C ⇒ B ⊆ C A \times B \subseteq A \times C \Rightarrow B \subseteq C A×BA×CBC

保持性

设A,B,C,D是任意非空集合

A ⊆ C ∧ B ⊆ D ⇔ A × B ⊆ C × D A\subseteq C \wedge B \subseteq D \Leftrightarrow A \times B \subseteq C \times D ACBDA×BC×D

其他性质

A × ⊘ = ⊘ × B = ⊘ A × B = ⊘ ⇔ A = ⊘ ∨ B = ⊘ A \times \oslash = \oslash \times B = \oslash \\ A \times B = \oslash \Leftrightarrow A = \oslash \vee B = \oslash A×=×B=A×B=A=B=

n维笛卡尔积

性质与二维笛卡尔积类似

二元关系

序偶的任意集合确定了一个二元关系 R R R

R R R是二元关系,则

< x , y > ∈ R ⇔ x 和 y 具有 R 关系 ⇔ x R y <x,y> \in R \Leftrightarrow x和y具有R关系 \Leftrightarrow xRy <x,y>∈Rxy具有R关系xRy

定义域,值域,域

定义域(前域):
d o m R = { x ∣ ∃ y ( x R y ) } dom R = \{x | \exists y (xRy)\} domR={x∣∃y(xRy)}
值域:
r a n R = { y ∣ ∃ x ( x R y ) } ran R = \{y | \exist x (xRy)\} ranR={y∣∃x(xRy)}
域:
f l d R = d o m R ∪ r a n R fldR = domR \cup ranR fldR=domRranR

A到B的二元关系

R 是 A 到 B 上的二元关系 ⇔ R ⊆ A × B ⇔ R ∈ P ( A × B ) R 是A到B上的二元关系 \Leftrightarrow R \subseteq A \times B \Leftrightarrow R \in P(A \times B) RAB上的二元关系RA×BRP(A×B)
当A = B时,叫做A上的二元关系

有限集上的二元关系数量

从A到B的不同二元关系共有 2 ∣ A ∣ × ∣ B ∣ 2^{|A| \times |B|} 2A×B

特殊关系

空关系 : ⊘ 恒等关系 : I A 全域关系 : E A 整出关系 : D A 小于等于关系 : L E A 小于关系 : L A 包含关系 : ⊆ A 真包含关系 : ⊂ A 空关系 : \oslash \\ 恒等关系 : I_A \\ 全域关系 : E_A \\ 整出关系 : D_A \\ 小于等于关系 : LE_A \\ 小于关系 : L_A \\ 包含关系 : \subseteq_A \\ 真包含关系 : \subset_A 空关系:恒等关系:IA全域关系:EA整出关系:DA小于等于关系:LEA小于关系:LA包含关系:A真包含关系:A

关系的表示方法

集合表示法

上述已介绍

关系矩阵

设 A = { a 1 , a 2 , . . . , a n } , R ⊆ A × A , 则 R 的关系矩阵 M ( R ) = ( r i j ) n × n , 其中 r i j = { 1 , x i R x j 0 , 否则 设A = \{a_1, a_2, ..., a_n\}, R \subseteq A \times A, 则R的关系矩阵M(R) = (r_{ij})_{n \times n}, \\ 其中 r_{ij} = \begin{cases}1, &x_iRx_j\\0, &否则 \end{cases} A={a1,a2,...,an},RA×A,R的关系矩阵M(R)=(rij)n×n,其中rij={1,0,xiRxj否则

关系图

设 A = { a 1 , a 2 , . . . , a n } , R ⊆ A × A , 则 A 中的元素以“ ° ”表示为顶点, R 中的元素以“ → ”表示为有向边, 这样得到的图称为关系图 设A = \{a_1, a_2, ..., a_n\}, R \subseteq A \times A,\\则A中的元素以“ ° ” 表示为顶点,R中的元素以“\rightarrow”表示为有向边,\\这样得到的图称为关系图 A={a1,a2,...,an},RA×A,A中的元素以“°”表示为顶点,R中的元素以表示为有向边,这样得到的图称为关系图

关系的计算

二元关系的集合运算

设 R 1 和 R 2 是 A 到 B 的二元关系,则 设R_1和R_2是A到B的二元关系,则 R1R2AB的二元关系,则

R 1 ∪ R 2 = { < x , y > ∣ < x , y > ∈ R 1 或 < x , y > ∈ R 2 } R 1 ∩ R 2 = { < x , y > ∣ < x , y > ∈ R 1 且 < x , y > ∈ R 2 } R 1 − R 2 = { < x , y > ∣ < x , y > ∈ R 1 但 < x , y > ∉ R 2 } ∼ R 1 = { < x , y > ∣ < x , y > ∈ A × B 但 < x , y > ∉ R 1 } R 1 ⊕ R 2 = { < x , y > ∣ < x , y > ∈ R 1 ∪ R 2 且 < x , y > ∉ R 1 ∩ R 2 } R_1 \cup R_2 = \{<x, y>|<x, y> \in R_1 或 <x, y> \in R_2\} \\ R_1 \cap R_2 = \{<x, y>|<x, y> \in R_1 且 <x, y> \in R_2\} \\ R_1 - R_2 = \{<x, y>|<x, y> \in R_1 但 <x, y> \notin R_2\} \\ \sim R_1= \{<x, y>|<x, y> \in A \times B 但 <x, y> \notin R_1\} \\ R_1 \oplus R_2 = \{<x, y>|<x, y> \in R_1 \cup R_2 且 <x, y> \notin R_1 \cap R_2\} \\ R1R2={<x,y><x,y>∈R1<x,y>∈R2}R1R2={<x,y><x,y>∈R1<x,y>∈R2}R1R2={<x,y><x,y>∈R1<x,y>/R2}R1={<x,y><x,y>∈A×B<x,y>/R1}R1R2={<x,y><x,y>∈R1R2<x,y>/R1R2}

二元关系的矩阵计算

设 A = { a 1 , a 2 , . . . , a n } , B = { b 1 , b 2 , . . . , b n } A 和 B 上的二元关系 : R 1 = ( c i j ) , R 2 = ( d i j ) , 有 R 1 ∪ R 2 = ( c i j ∨ d i j ) R 1 ∩ R 2 = ( c i j ∧ d i j ) R 1 − R 2 = ( c i j ∧ d i j ˉ ) ∼ R 1 = ( c i j ) ˉ 设A = \{a_1, a_2, ..., a_n\}, B = \{b_1, b_2, ..., b_n\}\\ A和B上的二元关系: R_1 = (c_{ij}), R_2 = (d_{ij}),有 \\ R_1 \cup R_2 = (c_{ij} \vee d_{ij})\\ R_1 \cap R_2 = (c_{ij} \wedge d_{ij})\\ R_1 - R_2 = (c_{ij} \wedge \bar{d_{ij}})\\ \sim R_1 = \bar{(c_{ij})} A={a1,a2,...,an},B={b1,b2,...,bn}AB上的二元关系:R1=(cij),R2=(dij),R1R2=(cijdij)R1R2=(cijdij)R1R2=(cijdijˉ)R1=(cij)ˉ

逆关系

对于任意关系 F , G F, G F,G可以定义逆关系
F − 1 = { < x , y > ∣ y F x } F^{-1} = \{<x,y>| yFx\} F1={<x,y>yFx}
R − 1 的关系矩阵就是矩阵的转置 R − 1 的关系图就是图中的弧线取反方向 R^{-1}的关系矩阵就是矩阵的转置\\ R^{-1}的关系图就是图中的弧线取反方向 R1的关系矩阵就是矩阵的转置R1的关系图就是图中的弧线取反方向

逆关系的性质

d o m F − 1 = r a n F r a n F − 1 = d a m F ( F − 1 ) − 1 = F ( R 1 ∪ R 2 ) − 1 = ( R 1 ) − 1 ∪ ( R 2 ) − 1 ( R 1 ∩ R 2 ) − 1 = ( R 1 ) − 1 ∩ ( R 2 ) − 1 ( A × B ) − 1 = ( B × A ) ( R ) − 1 ˉ = ( R ˉ ) − 1 ( R 1 − R 2 ) − 1 = ( R 1 ) − 1 − ( R 2 ) − 1 domF^{-1} = ranF \\ ranF^{-1} = dam F \\ (F^{-1})^{-1} = F\\ (R_1 \cup R_2)^{-1} = (R_1)^{-1} \cup (R_2)^{-1}\\ (R_1 \cap R_2)^{-1} = (R_1)^{-1} \cap (R_2)^{-1}\\ (A \times B) ^{-1} = (B \times A)\\ \bar{(R)^{-1}} = (\bar{R})^{-1}\\ (R_1 - R_2) ^{-1} = (R_1)^{-1} - (R_2)^{-1} domF1=ranFranF1=damF(F1)1=F(R1R2)1=(R1)1(R2)1(R1R2)1=(R1)1(R2)1(A×B)1=(B×A)(R)1ˉ=(Rˉ)1(R1R2)1=(R1)1(R2)1

复合

F ∘ G = { < x , y > ∣ ∃ z ( x F z ∧ z G y ) } F \circ G = \{<x,y>|\exist z(xFz \wedge zGy)\} FG={<x,y>∣∃z(xFzzGy)}

矩阵相乘求复合关系

R 为集合 X = { x 1 , x 2 , . . . , x m } 到 Y = { y 1 , y 2 , . . . , y n } 上的关系 M R = [ u i j ] m × n 表示 R 的关系矩阵 S 为集合 Y = { y 1 , y 2 , . . . , y n } 到 Z = { z 1 , z 2 , . . . , z l } 上的关系 M S = [ v i j ] n × l 则有: M R × S = M R ⋅ M S = [ W i k ] , 其中 W i k = ( ∨ ) 1 n ( u i j ∧ v j k ) R为集合X = \{x_1, x_2, ..., x_m\}到Y= \{y_1, y_2, ..., y_n\}上的关系 \\ M_R = [u_{ij}]_{m \times n}表示R的关系矩阵 \\ S为集合Y = \{y_1, y_2, ..., y_n\}到Z = \{z_1, z_2, ..., z_l\}上的关系\\ M_S = [v_{ij}]_{n \times l}\\ 则有:M_{R \times S} = M_R·M_S = [W_{ik}] , 其中W_{ik} = (\vee)^n_{1}(u_{ij} \wedge v_{jk}) R为集合X={x1,x2,...,xm}Y={y1,y2,...,yn}上的关系MR=[uij]m×n表示R的关系矩阵S为集合Y={y1,y2,...,yn}Z={z1,z2,...,zl}上的关系MS=[vij]n×l则有:MR×S=MRMS=[Wik],其中Wik=()1n(uijvjk)

用关系图求复合关系

将关系 R ∘ S R\circ S RS关系图画在一起,然后寻找所有首尾相接的两条有向边,再去掉中间相接的节点y,可以得到 R ∘ S R \circ S RS的关系图

复合关系的性质

R ∘ S ≠ S ∘ R ( R ∘ S ) ∘ P = R ∘ ( S ∘ P ) ( F ∘ G ) − 1 = G − 1 ∘ F − 1 R ∘ I A = I A ∘ R = R R 1 ∘ ( R 2 ∪ R 3 ) = ( R 1 ∘ R 2 ) ∪ ( R 1 ∘ R 3 ) ( R 1 ∪ R 2 ) ∘ R 3 = ( R 1 ∘ R 3 ) ∪ ( R 3 ∘ R 3 ) R 1 ∘ ( R 2 ∩ R 3 ) ⊆ ( R 1 ∘ R 2 ) ∩ ( R 1 ∘ R 3 ) ( R 1 ∩ R 2 ) ∘ R 3 ⊆ ( R 1 ∘ R 3 ) ∩ ( R 3 ∘ R 3 ) R \circ S \neq S \circ R \\ (R \circ S) \circ P = R \circ (S \circ P)\\ (F \circ G)^{-1} = G^{-1} \circ F^{-1} \\ R \circ I_A = I_A \circ R = R \\ R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2) \cup (R_1 \circ R_3) \\ (R_1 \cup R_2) \circ R_3 = (R_1 \circ R_3) \cup (R_3 \circ R_3) \\ R_1 \circ (R_2 \cap R_3) \subseteq (R_1 \circ R_2) \cap (R_1 \circ R_3) \\ (R_1 \cap R_2) \circ R_3 \subseteq (R_1 \circ R_3) \cap (R_3 \circ R_3) \\ RS=SR(RS)P=R(SP)(FG)1=G1F1RIA=IAR=RR1(R2R3)=(R1R2)(R1R3)(R1R2)R3=(R1R3)(R3R3)R1(R2R3)(R1R2)(R1R3)(R1R2)R3(R1R3)(R3R3)

限制,像

设R为二元关系, A ⊆ d o m ( R ) A \subseteq dom(R) Adom(R)

R在A上的限制
R ∣ A = { < x , y > ∣ x R y ∧ x ∈ A } R|_A = \{<x, y> | xRy \wedge x \in A \} RA={<x,y>xRyxA}
A在R下的像记作:
R [ A ] = r a n ( R ∣ A ) R[A] = ran(R|_A) R[A]=ran(RA)
以下运算应该成立:
F ∣ A ∪ B = F ∣ A ∪ F ∣ B F ∣ A ∩ B = F ∣ A ∩ F ∣ B F [ A ∪ B ] = F [ A ] ∪ F [ B ] F [ A ∩ B ] = F [ A ] ∩ F [ B ] F|_{A \cup B} = F|_A \cup F|_B \\ F|_{A \cap B} = F|_A \cap F|_B \\ F[A \cup B] = F[A] \cup F[B] \\ F[A \cap B] = F[A] \cap F[B] \\ FAB=FAFBFAB=FAFBF[AB]=F[A]F[B]F[AB]=F[A]F[B]

关系的幂运算

R ⊆ A × A , n ∈ N , 则有 R \subseteq A \times A, n \in N, 则有 RA×A,nN,则有

R 0 = I A ; R n + 1 = R n ∘ R R^0 = I_A; \\ R^{n + 1} = R^n \circ R R0=IA;Rn+1=RnR
R n R^n Rn表示的关系是R的关系图中长度为n的有向路径的起点和终点的关系

关系的幂运算满足指数律
R m ∘ R n = R m + n ( R m ) n = R m n R − n = ( R n ) − 1 R^m \circ R^n = R^{m + n} \\ (R^m)^n = R^{mn} R^{-n} = (R^{n})^{-1} RmRn=Rm+n(Rm)n=RmnRn=(Rn)1

鸽巢原理

将n + 1个鸽子装到n个鸽巢,至少有一个鸽巢装2只以上鸽子

其他定理

设 ∣ A ∣ = n , R ⊂ A × A , 则 ∃ s , t ∈ N , 并且 0 ≤ s < t ≤ 2 n 2 使得 R s = R t 设 ∣ A ∣ = n , R ⊂ A × A , 若 ∃ s , t ∈ N ( s < t > ) , 使得 R s = R t R s + k = R t + k R s + k p + i = R s + i , 其中 p = t − s 令 S = { R 0 , R 1 , . . . , R t } , 则对于 ∀ q ∈ N , R q ∈ S 设|A| = n, R \subset A \times A, 则 \exist s, t \in N, 并且 0 \le s < t \le 2^{n^2}\\ 使得 R^s = R^t \\ 设|A| = n, R \subset A \times A, 若 \exist s, t \in N (s < t>), 使得 R^s = R^t \\ R^{s + k} = R^{t + k} \\ R^{s + kp + i} = R^{s + i}, 其中 p = t - s \\ 令 S = \{R^0, R^1, ..., R^t\}, 则对于\forall q\in N, R^q \in S A=n,RA×A,s,tN,并且0s<t2n2使得Rs=RtA=n,RA×A,s,tN(s<t>),使得Rs=RtRs+k=Rt+kRs+kp+i=Rs+i,其中p=tsS={R0,R1,...,Rt},则对于qN,RqS

关系的性质

自反性

设 R ⊆ A × A , 如果 ∀ x ( x ∈ A → x R x ) 则称 A 是自反的 A 是非自反的 ⇔ ∃ x ( x ∈ A ∧ < x , x > ∉ R ) 设R \subseteq A \times A, 如果\\ \forall x(x \in A \rightarrow x R x)\\ 则称A是自反的\\ A是非自反的 \Leftrightarrow \exist x(x \in A \wedge <x, x> \notin R) RA×A,如果x(xAxRx)则称A是自反的A是非自反的x(xA<x,x>/R)
定理:
R 是自反的 ⇔ I A ⊆ R ⇔ R − 1 是自反的 ⇔ M ( R ) 的主对角线全为 1 ⇔ G ( r ) 的每个顶点都有自环 R是自反的\\ \Leftrightarrow I_A \subseteq R \\ \Leftrightarrow R^{-1}是自反的 \\ \Leftrightarrow M(R)的主对角线全为1\\ \Leftrightarrow G(r)的每个顶点都有自环 R是自反的IARR1是自反的M(R)的主对角线全为1G(r)的每个顶点都有自环

反自反性

设 R ⊆ A × A , 如果 ∀ x ( x ∈ A → < x , x > ∉ R ) 则称 A 是反自反的 A 是非反自反的 ⇔ ∃ x ( x ∈ A ∧ < x , x > ∈ R ) 设R \subseteq A \times A, 如果\\ \forall x(x \in A \rightarrow <x, x> \notin R)\\ 则称A是反自反的\\ A是非反自反的 \Leftrightarrow \exist x(x \in A \wedge <x, x> \in R) RA×A,如果x(xA→<x,x>/R)则称A是反自反的A是非反自反的x(xA<x,x>∈R)
定理:
R 是反自反的 ⇔ I A ∩ R = ⊘ ⇔ R − 1 是反自反的 ⇔ M ( R ) 的主对角线全为 0 ⇔ G ( r ) 的每个顶点都有没有自环 R是反自反的\\ \Leftrightarrow I_A \cap R = \oslash\\ \Leftrightarrow R^{-1}是反自反的 \\ \Leftrightarrow M(R)的主对角线全为0\\ \Leftrightarrow G(r)的每个顶点都有没有自环 R是反自反的IAR=R1是反自反的M(R)的主对角线全为0G(r)的每个顶点都有没有自环
自反性和反自反性互斥但不互补

对称性

设 R ⊆ A × A , 说 R 是对称的,如果 ∀ x ∀ y ( x ∈ A ∧ y ∈ A ∧ x R y → y R x ) R 是非对称的 ⇔ ∃ x ∃ y ( x ∈ A ∧ y ∈ A ∧ x R y ∧ < y , x > ∉ R ) 设R \subseteq A \times A , 说R是对称的,如果\\ \forall x \forall y(x \in A \wedge y \in A \wedge xRy \rightarrow yRx)\\ R是非对称的\Leftrightarrow \exist x \exist y(x \in A \wedge y \in A \wedge xRy \wedge <y,x> \notin R)\\ RA×A,R是对称的,如果xy(xAyAxRyyRx)R是非对称的xy(xAyAxRy<y,x>/R)
定理:
R 是对称的 ⇔ R − 1 = R ⇔ R − 1 是对称的 ⇔ M ( R ) 是对称的 ⇔ G ( R ) 的任意两个顶点如果有边,一定有两条反向的边 R是对称的\\ \Leftrightarrow R^{-1} = R\\ \Leftrightarrow R^{-1}是对称的\\ \Leftrightarrow M(R)是对称的 \\ \Leftrightarrow G(R)的任意两个顶点如果有边,一定有两条反向的边 R是对称的R1=RR1是对称的M(R)是对称的G(R)的任意两个顶点如果有边,一定有两条反向的边

反对称性

设 R ⊆ A × A , 说 R 是反对称的,如果 ∀ x ∀ y ( x ∈ A ∧ y ∈ A ∧ x R y ∧ y R x → x = y ) R 是非对称的 ⇔ ∃ x ∃ y ( x ∈ A ∧ y ∈ A ∧ x R y ∧ y R x ∧ x ≠ y ) 设R \subseteq A \times A , 说R是反对称的,如果\\ \forall x \forall y(x \in A \wedge y \in A \wedge xRy \wedge yRx \rightarrow x = y )\\ R是非对称的\Leftrightarrow \exist x \exist y(x \in A \wedge y \in A \wedge xRy \wedge yRx \wedge x \neq y)\\ RA×A,R是反对称的,如果xy(xAyAxRyyRxx=y)R是非对称的xy(xAyAxRyyRxx=y)
定理:
R 是反对称的 ⇔ R ∩ R − 1 ⊆ I A ⇔ R − 1 是反对称的 ⇔ 在 M ( R ) 中, ∀ i ∀ j ( i ≠ j ∧ r i j = 1 → r j i = 0 ) ⇔ G ( R ) 的任意两个顶点如果有边,一定只有一条单向边 R是反对称的\\ \Leftrightarrow R \cap R^{-1} \subseteq I_A\\ \Leftrightarrow R^{-1}是反对称的\\ \Leftrightarrow 在M(R)中,\forall i \forall j(i \neq j \wedge r_{ij} = 1 \rightarrow r_{ji} = 0) \\ \Leftrightarrow G(R)的任意两个顶点如果有边,一定只有一条单向边 R是反对称的RR1IAR1是反对称的M(R)中,ij(i=jrij=1rji=0)G(R)的任意两个顶点如果有边,一定只有一条单向边
对称和反对称既不互斥,也不互补(单位阵)

传递性

设 R ⊆ A × A , 说 R 是传递的,如果 ∀ x ∀ y ∀ z ( x ∈ A ∧ y ∈ A ∧ z ∈ A ∧ x R y ∧ y R z → x R z ) R 是非传递的 ⇔ ∃ x ∃ y ∃ z ( x ∈ A ∧ y ∈ A ∧ z ∈ A ∧ x R y ∧ y R z → < x , z > ∉ R ) 设R \subseteq A \times A , 说R是传递的,如果\\ \forall x \forall y \forall z(x \in A \wedge y \in A \wedge z \in A \wedge xRy \wedge yRz \rightarrow xRz)\\ R是非传递的 \\ \Leftrightarrow \exist x \exist y \exist z(x \in A \wedge y \in A \wedge z \in A \wedge xRy \wedge yRz \rightarrow <x,z>\notin R) RA×A,R是传递的,如果xyz(xAyAzAxRyyRzxRz)R是非传递的xyz(xAyAzAxRyyRz→<x,z>/R)
定理
R 是传递的 ⇔ R ∘ R ⊆ R ⇔ R − 1 是传递的 ⇔ M ( R ) 中 ¬ ( r i j ∧ r j k ) ∨ r i k = 1 ⇔ 在 G ( R ) 中,若 x , y 和 y , z 之间均存在有向边, x , z 之间一定存在有向边 R是传递的 \Leftrightarrow R \circ R \subseteq R\\ \Leftrightarrow R^{-1}是传递的\\ \Leftrightarrow M(R) 中 \neg(r_{ij}\wedge r_{jk}) \vee r_{ik} = 1\\ \Leftrightarrow 在G(R)中,若x,y和y,z之间均存在有向边,\\x,z之间一定存在有向边 R是传递的RRRR1是传递的M(R)¬(rijrjk)rik=1G(R)中,若xyy,z之间均存在有向边,x,z之间一定存在有向边

关系性质的判断

R 是自反的 ⇔ I A ⊆ R R 是反自反的 ⇔ I A ∩ R = ⊘ R 是对称的 ⇔ R − 1 = R R 是反对称的 ⇔ R − 1 ∩ R ⊆ I A R 是传递的 ⇔ R ∘ R ⊆ R R是自反的 \Leftrightarrow I_A \subseteq R\\ R是反自反的 \Leftrightarrow I_A \cap R = \oslash\\ R是对称的 \Leftrightarrow R^{-1} = R\\ R是反对称的 \Leftrightarrow R^{-1} \cap R \subseteq I_A\\ R是传递的 \Leftrightarrow R \circ R \subseteq R\\ R是自反的IARR是反自反的IAR=R是对称的R1=RR是反对称的R1RIAR是传递的RRR

关系的闭包

闭包

包含一些给定的对象,具有指定性质的最小集合

最小:任何包含同样对象,具有相同性质的集合,都包含这个闭包集合

自反闭包

包含给定关系R的最小自反关系,称为自反闭包, 记作 r ( R ) r(R) r(R)

( 1 ) R ⊆ r ( R ) ( 2 ) r ( R ) 是自反的 ( 3 ) ∀ S ( ( R ⊆ S ) ∧ ( S 自反 ) → r ( R ) ⊆ S ) (1) R \subseteq r(R)\\ (2) r(R)是自反的 \\ (3) \forall S ((R \subseteq S) \wedge (S自反) \rightarrow r(R) \subseteq S) (1)Rr(R)(2)r(R)是自反的(3)S((RS)(S自反)r(R)S)

对称闭包

包含给定关系R的最小对称关系,称为对称闭包, 记作 s ( R ) s(R) s(R)

( 1 ) R ⊆ s ( R ) ( 2 ) s ( R ) 是对称的 ( 3 ) ∀ S ( ( R ⊆ S ) ∧ ( S 对称 ) → s ( R ) ⊆ S ) (1) R \subseteq s(R)\\ (2) s(R)是对称的 \\ (3) \forall S ((R \subseteq S) \wedge (S对称) \rightarrow s(R) \subseteq S) (1)Rs(R)(2)s(R)是对称的(3)S((RS)(S对称)s(R)S)

传递闭包

包含给定关系R的最小传递关系,称为传递闭包, 记作 t ( R ) t(R) t(R)

( 1 ) R ⊆ t ( R ) ( 2 ) s ( R ) 是传递的 ( 3 ) ∀ S ( ( R ⊆ S ) ∧ ( S 传递 ) → r ( R ) ⊆ S ) (1) R \subseteq t(R)\\ (2) s(R)是传递的 \\ (3) \forall S ((R \subseteq S) \wedge (S传递) \rightarrow r(R) \subseteq S) (1)Rt(R)(2)s(R)是传递的(3)S((RS)(S传递)r(R)S)

定理

定理1

设 R ⊆ A × A , 且 A ≠ ⊘ , 则 ( 1 ) r ( R ) = R ∪ I A ( 2 ) s ( R ) = R ∪ R − 1 ( 3 ) t ( R ) = R ∪ R 2 ∪ R 3 ∪ . . . ( 3 ) 推论 : 设 R ⊆ A × A , 且 0 < ∣ A ∣ < ∞ , 则 ∃ I ∈ N , 使得 t ( R ) = R ∪ R 2 ∪ R 3 ∪ . . . ∪ R I 设 R \subseteq A \times A, 且A \neq \oslash, 则\\ (1) r(R) = R \cup I_A\\ (2) s(R) = R \cup R^{-1}\\ (3) t(R) = R \cup R^2 \cup R^3 \cup ...\\ (3)推论:\\ 设R \subseteq A \times A, 且 0 < |A| < \infin,\\ 则\exist I \in N, 使得t(R) = R \cup R^2 \cup R^3 \cup ... \cup R^I RA×A,A=,(1)r(R)=RIA(2)s(R)=RR1(3)t(R)=RR2R3...(3)推论:RA×A,0<A<,IN,使得t(R)=RR2R3...RI

定理2

设 R ⊆ A × A , 且 A ≠ ⊘ , 则 ( 1 ) R 是自反的 ⇔ r ( R ) = R ( 2 ) R 是自反的 ⇔ s ( R ) = R ( 3 ) R 是自反的 ⇔ t ( R ) = R 设 R \subseteq A \times A, 且A \neq \oslash, 则\\ (1) R是自反的 \Leftrightarrow r(R) = R\\ (2) R是自反的 \Leftrightarrow s(R) = R\\ (3) R是自反的 \Leftrightarrow t(R) = R\\ RA×A,A=,(1)R是自反的r(R)=R(2)R是自反的s(R)=R(3)R是自反的t(R)=R

定理3

设 R 1 ⊆ R 2 ⊆ A × A 且 A ≠ ⊘ , 则有 ( 1 ) r ( R 1 ) ⊆ r ( R 2 ) ( 2 ) s ( R 1 ) ⊆ s ( R 2 ) ( 3 ) t ( R 1 ) ⊆ t ( R 2 ) 设R_1 \subseteq R_2 \subseteq A \times A 且 A \neq \oslash,则有\\ (1) r(R_1) \subseteq r(R_2)\\ (2) s(R_1) \subseteq s(R_2)\\ (3) t(R_1) \subseteq t(R_2)\\ R1R2A×AA=,则有(1)r(R1)r(R2)(2)s(R1)s(R2)(3)t(R1)t(R2)

性质

性质1

闭包运算满足以下关系性质

自反性对称性传递性
×

性质2

设R ⊆ A × A , 且 A ≠ ⊘ ,则 s r ( R ) = r s ( R ) r t ( R ) = t r ( R ) s t ( R ) ⊆ t s ( R ) 设R \subseteq A \times A, 且 A \neq \oslash,则\\ sr(R) = rs(R) \\ rt(R) = tr(R) \\ st(R) \subseteq ts(R) 设RA×A,A=,则sr(R)=rs(R)rt(R)=tr(R)st(R)ts(R)

等价关系

等价关系的定义

设R是非空集合A上的关系,如果R是自反的、对称的、传递的,则成R是A上的等价关系。

等价类

设R是非空集合A上的等价关系, ∀ x ∈ A , [ x ] R = { y ∣ y ∈ A ∧ x R y } \forall x \in A,[x]_R = \{y|y \in A \wedge xRy\} xA,[x]R={yyAxRy}称为x关于R上的等价类,称为x的等价类,简记为[x]

x的等价类是A中所有与x具有等价关系的元素构成的集合

同余关系

对于任意大于 1 的自然数 n , x , y ∈ Z , 则 x 和 y 模 n 的同余 ⇔ x ≡ y ( m o d    n ) ⇔ n ∣ ( x − y ) ⇔ x − y = k n ( k ∈ Z ) 对于任意大于1的自然数n,x, y \in Z,则x和y模n的同余\\ \Leftrightarrow x\equiv y(mod \ \ n) \Leftrightarrow n | (x - y) \Leftrightarrow x - y = kn(k \in Z) 对于任意大于1的自然数n,x,yZ,xyn的同余xy(mod  n)n(xy)xy=kn(kZ)
同余关系也是等价关系

商集

设 R 是 A ≠ ⊘ 上的等价关系 , A / R = { [ x ] R ∣ x ∈ A } , 称为 A 关于 R 的商集 , 简称 A 的商集 设R是A\neq \oslash 上的等价关系,\\ A/R = \{[x]_R| x \in A\},\\ 称为A关于R的商集,简称A的商集\\ RA=上的等价关系,A/R={[x]RxA},称为A关于R的商集,简称A的商集
即以A的所有等价类作为元素的集合

覆盖和划分

设 A ≠ ⊘ , s = { A 1 , A 2 , . . . , A n } , 若 A 满足 ( 1 ) A i ≠ ⊘ ( 2 ) ∪ A i = A ( 3 ) A i ∩ A j = ⊘   ( i ≠ j ) 则称 S 为 A 的一个划分 若只满足 ( 1 ) ( 2 ) 则称为 A 的一个覆盖 设A \neq \oslash,s = \{A_1, A_2, ..., A_n\},若A满足\\ (1)A_i \neq \oslash\\ (2) \cup A_i = A \\ (3) A_i \cap A_j = \oslash \ (i \neq j) \\ 则称S为A的一个划分\\ 若只满足(1)(2)则称为A的一个覆盖 A=s={A1,A2,...,An},A满足(1)Ai=(2)Ai=A(3)AiAj= (i=j)则称SA的一个划分若只满足(1)(2)则称为A的一个覆盖

划分 → \rightarrow 等价关系

给定集合A的一个划分 π = { S 1 , S 2 , . . . , S m } \pi = \{S_1, S_2, ...,S_m\} π={S1,S2,...,Sm},则由该划分确定的关系 R = ( S 1 × S 1 ) ∪ ( S 2 × S 2 ) ∪ . . . ∪ ( S m × S m ) R = (S_1 \times S_1) \cup (S_2 \times S_2) \cup ... \cup (S_m \times S_m) R=(S1×S1)(S2×S2)...(Sm×Sm)是A上的等价关系,我们称R为由划分 π \pi π导出的等价关系

划分的加细

{ A 1 , A 2 , . . . , A r } \{A_1, A_2, ..., A_r\} {A1,A2,...,Ar} { B 1 , B 2 , . . . , B s } \{B_1, B_2, ..., B_s\} {B1,B2,...,Bs}都是同一集合A的两种划分,若对于每一个集合 A i A_i Ai都有 B j B_j Bj使得 A i ⊆ B j A_i \subseteq B_j AiBj则将 { A 1 , A 2 , . . . , A r } \{A_1, A_2, ..., A_r\} {A1,A2,...,Ar}称为 { B 1 , B 2 , . . . , B s } \{B_1, B_2, ..., B_s\} {B1,B2,...,Bs}的加细

第二类stirling数

Stirling子集数 { k n } \{^n_k\} {kn}:把n个对象分为k个非空子集的分法个数
{ 0 n } = 0    { 1 n } = 1 递推公式 { k n } = { k − 1 n − 1 } + k { k n − 1 } \{^n_0\} = 0 \ \ \{^n_1\} = 1 \\ 递推公式 \{^n_k\} = \{^{n - 1}_{k - 1}\} + k\{^{n - 1}_k\} {0n}=0  {1n}=1递推公式{kn}={k1n1}+k{kn1}

bell数

给n个对象进行分类,分发的个数
B n = Σ k = 0 n { k n } B_n = \Sigma^n_{k = 0} \{^n_k\} Bn=Σk=0n{kn}

定理

定理1

设 R 是 A ≠ ⊘ 上的等价关系 , ∀ x , y ∈ A ( 1 ) [ x ] R ≠ ⊘ ( 2 ) x R y ⇒ [ x ] R = [ y ] R ( 3 ) ¬ ( x R y ) ⇒ [ x ] R ∩ [ y ] R = ⊘ ( 4 ) ∪ ( [ x ] R ∣ x ∈ A ) = A 设R是A \neq \oslash上的等价关系,\forall x, y \in A \\ (1) [x]_R \neq \oslash \\ (2) xRy \Rightarrow [x]_R = [y]_R \\ (3) \neg (xRy) \Rightarrow [x]_R \cap [y]_R = \oslash \\ (4) \cup ([x]_R| x \in A) = A RA=上的等价关系,x,yA(1)[x]R=(2)xRy[x]R=[y]R(3)¬(xRy)[x]R[y]R=(4)([x]RxA)=A

定理2

设 A ≠ ⊘ ,则 ( 1 ) R 是 A 上的等价关系 ⇒ A / R 是 A 上的一个划分 ( 2 ) A / R 是 A 上的一个划分 ⇒ R 是 A 上的一个等价关系 设A \neq \oslash,则\\ (1)R是A上的等价关系\Rightarrow A / R是A上的一个划分\\ (2)A / R 是A上的一个划分 \Rightarrow R是A上的一个等价关系\\ A=,则(1)RA上的等价关系A/RA上的一个划分(2)A/RA上的一个划分RA上的一个等价关系
等价关系和划分一一对应

偏序关系

R ⊆ A × A , A ≠ ⊘ R \subseteq A \times A, A \neq \oslash RA×A,A=,若 R 是自反的,反对称的,传递的,则称R为偏序关系。

⪯ \preceq 表示偏序关系,读作“小于等于”

< x , y > ⊆ R ⇔ x R y ⇔ x ⪯ y <x, y> \subseteq R \Leftrightarrow xRy \Leftrightarrow x \preceq y <x,y>⊆RxRyxy
严格小于: x ≺ y ⇔ x ⪯ y ∧ x ≠ y x \prec y \Leftrightarrow x \preceq y \wedge x \neq y xyxyx=y

偏序集 < A , ⪯ > , ⪯ <A,\preceq>, \preceq <A,⪯>,是A上的偏序关系

盖住或覆盖

< A , ⪯ > <A, \preceq> <A,⪯>是偏序关系,x,y ∈ \in A

x ⪯ y ∨ y ⪯ x x \preceq y \vee y \preceq x xyyx, 则称x与y是可比的

任意x和y有三种情况:x和y可比, x = y, x和y不可比

y 盖住 x ⇔ x ⪯ y ∧ x ≠ y ∧ ¬ ∃ z ( z ∈ A ∧ x ⪯ z ∧ z ⪯ y ∧ x ≠ z ∧ y ≠ z ) 记作 C O V   A = { < x , y > ∣ x , y ∈ A , y 盖住 x } y盖住x \Leftrightarrow x \preceq y \wedge x \neq y \wedge \neg \exist z(z \in A \wedge x \preceq z \wedge z \preceq y \wedge x \neq z \wedge y \neq z) \\ 记作COV \ A = \{<x, y> | x, y \in A, y 盖住 x\} y盖住xxyx=y¬∃z(zAxzzyx=zy=z)记作COV A={<x,y>x,yA,y盖住x}

偏序关系的表示(哈斯图)

哈斯图:

·小圈代表元素

·如果y盖住x,在x和y之间画无向边

· x ⪯ y ∧ x ≠ y x \preceq y \wedge x \neq y xyx=y,则x在y的下方

偏序关系中的特殊元素

最大元,最小元

< A , ⪯ > <A, \preceq> <A,⪯>是偏序集, B ⊆ A , y ∈ B B \subseteq A, y \in B BA,yB
y 是 B 的最大元 ⇔ ∀ x ( x ∈ B → x ⪯ y ) y 是 B 的最小元 ⇔ ∀ x ( x ∈ B → y ⪯ x ) y是B的最大元 \Leftrightarrow \forall x(x \in B \rightarrow x \preceq y) \\ y是B的最小元 \Leftrightarrow \forall x(x \in B \rightarrow y \preceq x) \\ yB的最大元x(xBxy)yB的最小元x(xByx)
y是B的最大元,B中的所有元素都比y小(都可比)
y是B的最小元,则B中的所有元素都比y大(都可比)

极大元,极小元

< A , ⪯ > <A, \preceq> <A,⪯>是偏序集, B ⊆ A , y ∈ B B \subseteq A, y \in B BA,yB
y 是 B 的极大元 ⇔ ∀ x ( x ∈ B ∧ y ⪯ x → x = y ) y 是 B 的极小元 ⇔ ∀ x ( x ∈ B ∧ x ⪯ y → x = y ) y是B的极大元 \Leftrightarrow \forall x(x \in B \wedge y \preceq x \rightarrow x = y)\\ y是B的极小元 \Leftrightarrow \forall x(x \in B \wedge x \preceq y \rightarrow x = y)\\ yB的极大元x(xByxx=y)yB的极小元x(xBxyx=y)
y是B的极大元,B中没有比y大的元素
y是B的极小元,则B中没有比y小的元素

关于最大(小)元,极大(小)元定理

B的最大(小)元一定是B的极大(小)元

如果B有最大(小)元,则它一定是唯一的

如果B是有限集,则B一定有极大(小)元

最大(小)元未必存在,存在即是唯一

极大(小)元对于有限集一定存在,未必唯一

上界和下界

< A , ⪯ > <A, \preceq> <A,⪯>是偏序集, B ⊆ A , y ∈ A B \subseteq A, y \in A BA,yA
y 是 B 的上界 ⇔ ∀ x ( x ∈ B → x ⪯ y ) y 是 B 的下界 ⇔ ∀ x ( x ∈ B → y ⪯ x ) y是B的上界 \Leftrightarrow \forall x (x \in B \rightarrow x \preceq y) \\ y是B的下界 \Leftrightarrow \forall x (x \in B \rightarrow y \preceq x) \\ yB的上界x(xBxy)yB的下界x(xByx)

最小上界,最大下界

< A , ⪯ > <A, \preceq> <A,⪯>是偏序集, B ⊆ A B \subseteq A BA

最小上界:

C = { y ∣ y 是 B 的上界 } C = \{y|y是B的上界\} C={yyB的上界},C的最小元素称为B的最小上界,或上确界

最大下界:

C = { y ∣ y 是 B 的下界 } C = \{y|y是B的下界\} C={yyB的下界},C的最大元素称为B的最大下界,或下确界

上界,上确界定理

如果b是B的最小元,则他一定是B的上确界

如果b是B的上界,且b ∈ \in B,则他一定是B的最小元

如果B有上确界,则上确界是唯一的

上下界未必存在,存在也不一定唯一

有了上界,也不一定存在上确界(上界之间未必可以比较大小)

链的定义:

设 < A , ⪯ > 为偏序集, B ⊆ A , B 是 A 的链 ⇔ ∀ x ∀ y ( x ∈ B ∧ y ∈ A → x ⪯ y ∨ y ⪯ x ) ( x 和 y 可比) ∣ B ∣ 称为链的长度 设<A, \preceq>为偏序集,B \subseteq A,\\ B是A的链\Leftrightarrow \forall x\forall y(x \in B \wedge y \in A \rightarrow x \preceq y \vee y \preceq x) (x和y可比)\\ |B|称为链的长度 <A,⪯>为偏序集,BA,BA的链xy(xByAxyyx)xy可比)B称为链的长度
反链的定义:

B 是 A 的反链 ⇔ ∀ x ∀ y ( x ∈ A ∧ y ∈ B ∧ x ≠ y → x 和 y 不可比 ) B 称为反链的长度 B是A的反链\Leftrightarrow \forall x \forall y(x \in A \wedge y \in B \wedge x \neq y \rightarrow x和y不可比)\\ B称为反链的长度 BA的反链xy(xAyBx=yxy不可比)B称为反链的长度
B = { a } B=\{a\} B={a}既是长度为1的链,也是长度为反链

存在集合,既不是链,也不是非链

全序关系

若偏序集 < A , ⪯ > <A, \preceq> <A,⪯>满足
KaTeX parse error: Undefined control sequence: \wedeg at position 30: …rall y(x \in A \̲w̲e̲d̲e̲g̲ ̲y \in A \righta…
则称 ⪯ \preceq 为全序关系(线性关系),称 < A , ⪯ > <A, \preceq> <A,⪯>为全序集

拟序关系

R ⊆ A × A 且 A ≠ ⊘ R \subseteq A \times A且 A \neq \oslash RA×AA=,若R是反自反的,传递的,则称R为拟序关系

通常用 ≺ \prec 来表示拟序关系

反自反性和传递性蕴含反对称性

拟序集: < A , ≺ > <A,\prec> <A,≺>是A上的拟序关系

良性关系

< A , ⪯ > 为偏序集,若 A 的任何非空子集 B 都有最小元,则称为良序关系, <A,\preceq>为偏序集,若A的任何非空子集B都有最小元,则称为良序关系, <A,⪯>为偏序集,若A的任何非空子集B都有最小元,则称为良序关系,<A,\preceq>$为良序集

良序关系一定是全序关系,而有限全序关系一定是良序集

图的基本概念

预备知识

多重集合

元素可以重复出现的集合

无序积

设A,B是任意的两个集合,称
A & B = { { a , b } ∣ a ∈ A ∧ b ∈ B } A \& B = \{\{a, b\} | a \in A \wedge b \in B\} A&B={{a,b}aAbB}
为A与B的无序积

为方便起见,将{a, b}记作(a, b)并允许a=b

无论a与b是否相等,均有(a, b) = (b, a)

图的分类

图的数学定义和图形表示,在同构的意义下是一一对应的

无向图

无向图 G = < V , E > G = <V, E> G=<V,E>,其中

  1. V ≠ ⊘ V\neq \oslash V=称为顶点集,其中的元素称为顶点
  2. E E E E & E E\& E E&E的多重子集,其元素称为无向边,简称为边

有向图

有向图 G = < V , E > G = <V, E> G=<V,E>,其中

  1. V ≠ ⊘ V\neq \oslash V=称为顶点集,其中的元素称为顶点
  2. E E E E × E E\times E E×E的多重子集,其元素称为有向边,简称为边

图的相关概念

图的符号表示

  • G G G:无向图
  • D D D:有向图
  • V ( G ) V(G) V(G):顶点集
  • E ( G ) E(G) E(G):边集
  • ∣ V ( G ) ∣ |V(G)| V(G):顶点数
  • ∣ E ( G ) ∣ |E(G)| E(G):边集
  • 顶点数称为,n个顶点的图称为n阶图

零图和平凡图

一条边没有的图称作零图,n阶零图记作 N n N_n Nn

一阶零图称作平凡图,平凡图只有一个顶点没有边

空图

顶点集为空集的图称作空图,记作 ⊘ \oslash

标定图

再用图形来表示图的时候,如果给每一个顶点和每一条边都指定符号,则这样的图称为标定图,否则称为否标定图

基图

将有向图的各个边改成无向边后得到的无向图称为有向图的基图

端点与关联

G = < V , E > G=<V, E> G=<V,E>无向图 e k = ( v i , v j ) ∈ E e_k=(v_i, v_j) \in E ek=(vi,vj)E,称 v i , v j v_i, v_j vi,vj e k e_k ek端点 e k e_k ek v i ( v j ) v_i(v_j) vi(vj)关联,若 v i ≠ v j v_i \neq v_j vi=vj,则称 e k e_k ek v i ( v j ) v_i(v_j) vi(vj)关联次数为1,否则称 e k e_k ek v i ( v j ) v_i(v_j) vi(vj)关联次数为2,并称 e k e_k ek为环;如果顶点与边不关联,则称关联次数为0

D = < V , E > D=<V, E> D=<V,E>有向图 e k = < v i , v j > ∈ E e_k=<v_i, v_j> \in E ek=<vi,vj>∈E,称 v i , v j v_i, v_j vi,vj e k e_k ek端点 v i v_i vi e k e_k ek的始点, v j v_j vj e k e_k ek的终点, e k e_k ek v i ( v j ) v_i(v_j) vi(vj)关联,若 v i = v j v_i = v_j vi=vj,则称 e k e_k ek为环

相邻

若两个顶点之间有一条边相连,则称这两个顶点相邻

若两条边至少有一个公共顶点,则称这两条边相邻

孤立点

图中没有边关联的顶点称为孤立点

邻域和关联集

无向图

设无向图 G = < V , E > , ∀ v ∈ V G=<V, E>, \forall v \in V G=<V,E>,vV,称

v的邻域 N c ( v ) = { u ∣ u ∈ V ∧ ( u , v ) ∈ E ∧ u ≠ v } N_c(v) = \{u|u \in V \wedge (u, v) \in E \wedge u \neq v\} Nc(v)={uuV(u,v)Eu=v}

v的闭邻域 N c ( v ) ˉ = N c ( v ) ∪ v \bar{N_c(v)} = N_c(v) \cup v Nc(v)ˉ=Nc(v)v

v的关联集 I c ( v ) = { e ∣ e ∈ E ∧ e 和 v 相关联 } I_c(v) = \{e|e \in E \wedge e和v相关联\} Ic(v)={eeEev相关联}

有向图

设有向图 G = < V , E > , ∀ v ∈ V G=<V, E>, \forall v \in V G=<V,E>,vV,称

v的后继元素 I D + ( v ) = { u ∣ u ∈ V ∧ < v , u > ∈ E ∧ u ≠ v } I^+_D(v) = \{u|u \in V \wedge <v, u> \in E \wedge u \neq v\} ID+(v)={uuV<v,u>∈Eu=v}

v的前去元素 I D − ( v ) = { u ∣ u ∈ V ∧ < u , v > ∈ E ∧ u ≠ v } I^-_D(v) = \{u|u \in V \wedge <u, v> \in E \wedge u \neq v\} ID(v)={uuV<u,v>∈Eu=v}

v的邻域 N D ( v ) = I D + ( v ) ∪ I D − ( v ) N_D(v) = I^+_D(v) \cup I^-_D(v) ND(v)=ID+(v)ID(v)

v的闭邻域 N c ( v ) ˉ = N c ( v ) ∪ v \bar{N_c(v)} = N_c(v) \cup v Nc(v)ˉ=Nc(v)v

多重图和简单图

在无向图中,如果关联一个顶点的无向边多于一条,则称这些边为平行边,平行边的条数称为重数

在有向图中,如果关联一个顶点的有向边多与一条,且这些边的始点和终点相同(方向相同),则称这些边为平行边

含平行边的图称为多重图

既不含多重边也不含环的称为简单图

图的度数

G = < V , E > G=<V,E> G=<V,E>无向图 ∀ v ∈ V \forall v \in V vV,称v作为边的端点的次数为v的度数,简称为,记作 d G ( V ) d_G(V) dG(V)

D = < V , E > D=<V,E> D=<V,E>有向图 ∀ v ∈ V \forall v \in V vV,称v作为始点的次数为v的出度,记作 d D + ( V ) d^+_D(V) dD+(V),称v作为终点的次数为v的入度,记作 d D − ( V ) d^-_D(V) dD(V),称 d D − ( v ) + d D + ( V ) d^-_D(v)+d^+_D(V) dD(v)+dD+(V)为v的度数,记作 d D ( v ) d_D(v) dD(v)

在无向图中,将 Δ ( G ) = m a x { d ( v ) ∣ v ∈ V ( G ) } \Delta(G)=max\{d(v)|v \in V(G)\} Δ(G)=max{d(v)vV(G)}称作G的最大度

δ ( G ) = m i n { d ( v ) ∣ v ∈ V ( G ) } \delta(G)=min\{d(v)|v \in V(G)\} δ(G)=min{d(v)vV(G)}称作G的最小度

类比可以得到最大度最小度在有向图中的概念

悬挂顶点·悬挂边

将度数为1的顶点称作悬挂顶点

将与悬挂顶点关联的边称作悬挂边

度为奇数(偶数)的顶点称为奇度顶点(偶度顶点)

握手定理

定理一

任何的无向图,所有顶点的度数之和等于边数量的二倍

定理二

任何的有向图,所有顶点的度数之和等于边数量的二倍,所有顶点的入度和等于所有顶点的出度和,并且都等于边数

推论

任何图中,度为奇数的顶点有偶数个

图的度数列

  • V = { v 1 , v 2 , . . . , v n } V=\{v_1,v_2,...,v_n\} V={v1,v2,...,vn}为无向图的顶点集,称 d ( v 1 ) , d ( v 2 ) , . . . , d ( v n ) d(v_1),d(v_2),...,d(v_n) d(v1),d(v2),...,d(vn)为G的度数列
  • V = { v 1 , v 2 , . . . , v n } V=\{v_1,v_2,...,v_n\} V={v1,v2,...,vn}为有向图的顶点集
    • D的度数列 d ( v 1 ) , d ( v 2 ) , . . . d ( v n ) d(v_1),d(v_2),...d(v_n) d(v1),d(v2),...d(vn)
    • D的出度列 d + ( v 1 ) , d + ( v 2 ) , . . . d + ( v n ) d^+(v_1),d^+(v_2),...d^+(v_n) d+(v1),d+(v2),...d+(vn)
    • D的度数列 d − ( v 1 ) , d − ( v 2 ) , . . . d − ( v n ) d^-(v_1),d^-(v_2),...d^-(v_n) d(v1),d(v2),...d(vn)

非负整数列图化条件

  • 非负整数列可图化当且仅当 Σ i = 1 n d i \Sigma^n_{i=1}d_i Σi=1ndi是偶数
  • 设G为任意的简单无向图,则 Δ ( G ) < n \Delta(G) < n Δ(G)<n
  • 38
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值