离散数学知识点总结

四.集合

1.N:自然数集,N*:正整数集,R:实数集,Q:有理数集,Z:整数集,C:复数集。

2.基:集合A中不同元素的个数,|A|。

3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,记做P(A)。

4.若集合A中有n个元素,则A有2^{n}个子集(含空集),则其幂集P(A)中含2^{n}个元素。

5.集合的分划
   ①.由集合A的若干非空子集构成;
   ②.这几个子集相交为空,相并为A。
6.集合的覆盖
   ①.由集合A的若干非空子集构成;
   ②.这些非空子集的相交未必为空,但相并一定为A

5.关系

1.若集合A有m个元素,集合B有n个元素,则A,B的笛卡尔基的基数为m*n,A到B上可以定义2^{m*n}种关系。

2.五种性质的解释:
   1)自反性:R为AxA的非空子集,若任意的x\in A,有(x,x)都属于R,则称由R规定的关系是自反的。
   2)反自反性:R为AxA的非空子集,若任意的x\in A,有(x,x)都不属于R,则称由R规定的关系是反自反的。
   3)对称性:R为AxA的非空子集,若任意的x,y\in A,有(x,y)属于R,且(y,x)也一定属于R,则称R规定的关系是对称的。
   4)反对称性:R为AxA的非空子集,若任意的x,y\in A,当且仅当x=y时,有(x,y)属于R,(y,x)也属于R,则称R规定的关系是对称的。
   5)传递性:R为AxA的非空子集,若任意的x,y,z\in A,若(x,y)属于R,(y,z)属于R,则(x,z)属于R,则称R所规定的关系是传递的。

3.全关系的性质:1)自反性;2)对称性;3)传递性
   空关系的性质:1)反自反性;2)反对称性;3)传递性
   全封闭环的性质:1)自反性;2)对称性;3)反对称性;4)传递性

4.前域:所有元素x组成的集合
   后域:所有元素y组成的集合;

5.等价关系:集合A上满足1)自反,2)对称,3)传递三种性质的二元关系R称为等价关系

6.偏序关系:集合A上满足1)自反,2)反对称,3)传递三种性质的二元关系R称为偏序关系

7.自反闭包:添加最少的序偶后产生的满足自反性的关系称为原关系的自反闭包
   对称闭包:添加最少的序偶后产生的满足对称性的关系称为原关系的对称闭包
   传递闭包:添加最少的序偶后产生的满足传递性的关系称为原关系的传递闭包

8.极小元、极大元、最小元、最大元的概念。这个概念是建立在偏序关系上的。
   极小元:假设a为极小元,则任取与a具有关系R的元素x,都有aRx,则a为极小元
   极大元:假设a为极大元,则任取与a具有关系R的元素x,都有xRa,则a为极大元
   最小元:假设a为最小元,集合A中任意元素x,都有aRx,则a为最小元
   最大元:假设a为最大元,集合A中任意元素x,都有xRa,则a为最大元
   下面我们以集合A = {1,2,3,4,5},定义关系为整除关系,则关系R为{(1,1),(1,2),(1,3),(1,4),(1,5),(2,2),(2,4),(3,3),(4,4),(5,5)}
    为方便我们计算若干元,我们利用上述偏序关系画出哈斯图,具体步骤就是,删除自反和传递结果,即{(1,2),(1,3),(1,5),(2,4)},作图如下:

那么对于集合A = {1,2,3,4,5}来说,极大元:4,3,5;极小元:1;最大元:无;最小元1。
   大家还可以那下面这个相对复杂的集合和偏序关系来练手:集合A = {1,2,3,4,5,6,7,8},定义关系为整除关系,则哈斯图如下:

   那么对于子集B = {2,3,6}来说,分别判断其各个元的值:
   答案: 

9.上界、上确界、下界,下确界,同样是建立在偏序关系上的:这里我们引用书上的定义

   几点性质:1.上界、上确界、下界,下确界不一定存在;
                     2.上界、下界如果存在也不一定唯一;
                     3.上确界、下确界若存在则一定唯一;
                     4.集合的最小元就是其下确界,最大元就是其上确界;单反之不一定成立。
第六章 函数

1.函数的三要素:定义域,值域,对应法则。

2.从集合的角度看函数的定义:设A和B是两个非空集合,如果按照某种对应关系 ,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作f:A\rightarrow B,定义在非空集合上的这种映射称为函数。其中,b称为a在映射f下的象,记作:b = f(a); a称为b关于映射f的原象集合A中所有元素的象的集合记作f(A)。

3.集合X的基|X| = m,集合Y的基|Y| = n,则从X到Y有2^{m*n}种关系,有n^{m}种函数。

4.单射:f:X\rightarrow Y,对任意的x1,x2\in X,x1\not\neq x2,则f(x1)\not\neq f(x2),则称f为单射。
   满射:f:X\rightarrow Y,Y中任意元素在X中都有一个或多个元素对应,则称f为满射。
   双射:f:X\rightarrow Y既是单射又是满射,则称为双射,这里|X| = |Y|。

5.有关单射/双射:若集合X的基|X| = m,集合Y的基|Y| = n,m <= n, X到Y有C_{m}^{n} * n! 个单射.
                             若集合X的基|X| = m,集合Y的基|Y| = n,m = n, X到Y有n! 个单射

第11章 图论

1.临接:两点之间有边连接,则称点与点临接。

2.关联:两点之间有边连接,则这两点与边关联。

3.平凡图:只有一个孤立节点构成的图。

4.简单图:不含平行边和环的图。

5.无向完全图:n个节点任意两点之间都存在边连接的简单无向图。
   有向完全图:n个节点任意两点之间都存在边连接的简单有向图。

6.无向完全图:有n(n - 1) / 2条边。
   有向完全图:有n(n - 1) 条边。

7.r-正则图:每个节点的度数均为r的图。

8.定理:节点的度数总和等于边的两倍。

9.任何图中,度数为奇数的节点必定是偶数个。

10.任意的有向图,入度之和等于出度之和。

11.每个节点的度数至少为2的图必定包含一条回路;

12.可达:对于图中的两个节点,若存在通路,则称为相互可达,也称为相互连通
     可达矩阵:指的是用矩阵形式来描述图的各节点之间经过一定长度的通路后可到的程度

13.如果图中任意两点都是连通的,那么图被称作连通图,图的连通性是图的基本性质。
     对于有向图来讲,图的连通性分为:强连通、单向连通、弱连通。

14.连通分支(量):一个图G由几部分组成,各部分内部都是连通的,但各部分之间是不连通的,则称每一部分为该图的一个连通分支。

15.强连通图:对于有向图G,其中任意两个不同节点都相互可达,则称G为强连通图
     强连通分量:有向图中的极大强连通子图成为该有向图的强连通分量
     单向连通:有向图G中两个节点至少有一个方向可达。
     弱连通图:将有向图的所有的有向边替换为无向边,所得到的图称为原图的基图。如果一个有向图的基图是连通图,则有向图是弱连通图。

16.顶点的导出子图:设G = <V,E>为一图,V'\subset VV_{1} \neq \o,称以V_{1} 为顶点集,以G中两个端点都在V_{1}中的边组成边集E_{1}的图为G的V_{1}导出子图,记做G[V_{1}]。     
     边的导出子图:设E_{1}\subset E,且E_{1} \neq \o,称以E_{1}为边集,以E_{1}中变关联的顶点为顶点集V_{1}的图为G的E_{1}导出子图,记做G[E_{1}]

17.同构:两个图的节点和边存在一一对应关系,且相互关联,最简单的例子,下面的五边形和五角星是同构的:

详细定义:

关于最后一点的通俗理解就是,G1中两顶点之间相连接的边和G2中对应顶点间连接的边完全一致(或满足一对一映射)

判断方法:
   判断两图的邻接矩阵是否相同。

18.割边:去掉后连通分支数加一的边。

持续更新~

 

  • 14
    点赞
  • 126
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值