62. 不同路径

62. 不同路径

62. 不同路径

一个机器人位于一个m x n网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

示例 1:
在这里插入图片描述

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 10^9

思路

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

1.确定dp数组以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) dp[i][j]条不同的路径。

2.确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] dp[i][j - 1]

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

3.dp数组的初始化
如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

所以初始化代码为:

for j:= 0;j < n;j++{ 
	dp[0][j] = 1 // 第一行
}
for i:= 0;i < m;i++{
    dp[i][0] = 1 // 第一列
}

4.确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1]dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

5.举例推导dp数组

如图所示:

在这里插入图片描述

以上动规五部曲分析完毕,Go代码如下:

func uniquePaths(m int, n int) int {
    // 初始化dp切片
    dp := make([][]int,m)
    for i := 0;i < m;i++ {
        dp[i] = make([]int,n)
    }
    // 由于只能向右或者下走,所以第一行和第一列都只有一种走法
    for j:= 0;j < n;j++{ 
        dp[0][j] = 1 // 第一行
    }
    for i:= 0;i < m;i++{
        dp[i][0] = 1 // 第一列
    }
    for i := 1;i < m;i++ {
        for j := 1;j < n;j++{
            dp[i][j]  = dp[i-1][j] + dp[i][j-1]
        }
    }
    return dp[m-1][n-1]
}

时间复杂度: O ( m × n ) O(m × n) O(m×n)
空间复杂度: O ( m × n ) O(m × n) O(m×n)

在这里插入图片描述

总结

依然是使用动规五部曲,这次我们就要考虑如何正确的初始化了,通过本题有没有初步感觉到初始化和遍历顺序其实也很重要了呢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值