62. 不同路径
一个机器人位于一个m x n
网格的左上角 (起始点在下图中标记为 “Start”
)。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”
)。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
提示:
- 1 <= m, n <= 100
- 题目数据保证答案小于等于 2 * 10^9
思路
机器人从(0 , 0)
位置出发,到(m - 1, n - 1)
终点。
按照动规五部曲来分析:
1.确定dp数组以及下标的含义
dp[i][j]
:表示从(0 ,0)
出发,到(i, j)
有dp[i][j]
条不同的路径。
2.确定递推公式
想要求dp[i][j]
,只能有两个方向来推导出来,即dp[i - 1][j]
和 dp[i][j - 1]
。
此时在回顾一下 dp[i - 1][j]
表示啥,是从(0, 0)
的位置到(i - 1, j)
有几条路径,dp[i][j - 1]
同理。
那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
,因为dp[i][j]
只有这两个方向过来。
3.dp数组的初始化
如何初始化呢,首先dp[i][0]
一定都是1
,因为从(0, 0)
的位置到(i, 0)
的路径只有一条,那么dp[0][j]
也同理。
所以初始化代码为:
for j:= 0;j < n;j++{
dp[0][j] = 1 // 第一行
}
for i:= 0;i < m;i++{
dp[i][0] = 1 // 第一列
}
4.确定遍历顺序
这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
,dp[i][j]
都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
这样就可以保证推导dp[i][j]
的时候,dp[i - 1][j] 和 dp[i][j - 1]
一定是有数值的。
5.举例推导dp数组
如图所示:
以上动规五部曲分析完毕,Go
代码如下:
func uniquePaths(m int, n int) int {
// 初始化dp切片
dp := make([][]int,m)
for i := 0;i < m;i++ {
dp[i] = make([]int,n)
}
// 由于只能向右或者下走,所以第一行和第一列都只有一种走法
for j:= 0;j < n;j++{
dp[0][j] = 1 // 第一行
}
for i:= 0;i < m;i++{
dp[i][0] = 1 // 第一列
}
for i := 1;i < m;i++ {
for j := 1;j < n;j++{
dp[i][j] = dp[i-1][j] + dp[i][j-1]
}
}
return dp[m-1][n-1]
}
时间复杂度:
O
(
m
×
n
)
O(m × n)
O(m×n)
空间复杂度:
O
(
m
×
n
)
O(m × n)
O(m×n)
总结
依然是使用动规五部曲,这次我们就要考虑如何正确的初始化了,通过本题有没有初步感觉到初始化和遍历顺序其实也很重要了呢!