C++二分查找

文章介绍了二分查找算法,也称为折半查找,它是一种在有序序列中查找特定元素的高效方法。通过C++代码展示了如何实现二分查找,包括两种不同的实现方式,并强调了算法的时间复杂度为O(logn)。在查找过程中,通过不断比较中间元素与目标值来缩小搜索范围,直至找到目标元素或搜索区间为空。
摘要由CSDN通过智能技术生成

二分查找

描述

从小到大输入若干整数(不超过300),以-99999为结束符,然后再输入一个整数x,在前面的整数中用二分查找法查找x,若找到,显示数的下标(即从0开始的序号);若找不到,显示-1。注意,不应使用别人写的库函数。‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬

输入

若干整数。‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬

输出

一个下标。‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬

输入输出示例

在这里插入图片描述

#include <iostream>
#include <vector>
using namespace std;
int main() {
    vector<int> nums;
    int num;
    while (cin >> num && num != -99999) {
        nums.push_back(num);
    }

    int x;
    cin >> x;

    int left = 0;
    int right = nums.size() - 1;
    while (left <= right) {
        int mid = (left + right) / 2;
        if (nums[mid] == x) {
            cout << mid << endl;
            return 0;
        } else if (nums[mid] < x) {
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }

    cout << -1 << endl;
    return 0;
}
#include <iostream>
using namespace std;
int binarySearch(int a[], int left, int right, int dest);
int main() {
	int a[310];
	int i = 0;
	int num;
	while (cin >> num && num != -99999)
		a[i++] = num;
	int dest;
	cin >> dest;
	int idx = binarySearch(a, 0, i - 1, dest);
	cout << idx << endl;
	return 0;
}

int binarySearch(int a[], int left, int right, int dest) {
	while (left <= right) { //只要数组还没空
		int midIdx = (left + right) / 2; //就取中间值比较
		int mid = a[midIdx];
		if (dest > mid)	//中间值小了,说明目标数在右边,就把左端右移
			left = midIdx + 1;
		else if (dest < mid) //中间值大了,说明目标数在左边,就把右端左移
			right = midIdx - 1;
		else
			return midIdx;//找到后就返回
	}
	return -1;

}
//二分查找必须是有序序列

二分查找(Binary Search),也称为折半查找,是一种常用的查找算法。它将要查找的区间中间位置的元素与所要查找的元素进行比较,如果两个元素相等,则查找成功;如果中间位置的元素大于要查找的元素,则在左半部分区间中继续查找;如果中间位置的元素小于要查找的元素,则在右半部分区间中继续查找。依次类推,直到查找到要查找的元素,或者查找区间缩小为 0。

下面是 C++ 实现二分查找的代码示例:

#include <iostream>
#include <algorithm>

using namespace std;

int binarySearch(int arr[], int n, int x) {
    int left = 0, right = n - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (arr[mid] == x) {
            return mid;
        } else if (arr[mid] < x) {
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }
    return -1;
}

int main() {
    int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
    int n = sizeof(arr) / sizeof(arr[0]);
    int x = 4;
    int result = binarySearch(arr, n, x);
    if (result == -1) {
        cout << "Element not found" << endl;
    } else {
        cout << "Element found at index " << result << endl;
    }
    return 0;
}

在上面的例子中,我们使用了 while 循环实现了二分查找。算法的时间复杂度是 O(log n)。注意到有时候二分查找可能会溢出,因此在计算 mid 时需要用 left + (right - left) / 2 替换 (left + right) / 2。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不掉发的小刘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值