【欧拉公式】借助简单的球面几何证明欧拉公式

前言

在初中课本,就有提到欧拉公式,即对于一个多面体,存在点+面-线=2,简记口决为“小二,点碗面线”。若设点数为n,面数为r,线数为m,则可表记为

n+r-m=2

在图论中,对于平面图,该公式也成立。这两个情形其实是同一种状况。

用数学归纳法可以证明该公式,但在高中数学中,还有另一种特殊的方法——利用球面几何。

预备知识

在平面中,k边形内角和 \varphi=(k-2)\pi

但在半径为1的球面上,k边形内角和 \varphi=(k-2)\pi+S ,其中S为k边形的面积。

证明过程

像吹气球一样的方法,将多面体吹成每条边都铺在半径为1的单位球面上,就像足球上的花纹一样。设点数为n,面数为r,线数为m。

每个点周围角的和为 2\pi (包括平角、优角和周角),则所有角的和为 2n\pi

对于每个多边形,设其边数为 m_{i} ,面积为 S_{i} ,则其内角和为 m_{i}\pi-2\pi+S_{i} 。所有多边形内角和等于所有角的和 \sum_{i=1}^{r}{(m_{i}\pi-2\pi+S_{i})} ,由于每条边被两个多边形共用(或被一个多边形使用两次),所以:

\sum_{i=1}^{r}{(m_{i}\pi-2\pi+S_{i})}=2m\pi-2r\pi+4\pi

联立得: 2m\pi-2r\pi+4\pi=2n\pi

n+r-m=2

后记

这是课本上的方法,证明过程比其它方法简短得多,但我在网络上没找到,所以写在这里和大家分享。球面几何和正常的几何有些差别,看着还是很有意思的。它也可以为之后学习黎曼几何、喷咖喱模型、客来阴模型做准备。

对于凹多面体是否能铺在球面上,以及空心体、复杂多面体等情况,在这不做介绍。

参考资料

人教版 高中数学选修 球面上的几何

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值