【欧拉公式】借助简单的球面几何证明欧拉公式

前言

在初中课本,就有提到欧拉公式,即对于一个多面体,存在点+面-线=2,简记口决为“小二,点碗面线”。若设点数为n,面数为r,线数为m,则可表记为

n+r-m=2

在图论中,对于平面图,该公式也成立。这两个情形其实是同一种状况。

用数学归纳法可以证明该公式,但在高中数学中,还有另一种特殊的方法——利用球面几何。

预备知识

在平面中,k边形内角和 \varphi=(k-2)\pi

但在半径为1的球面上,k边形内角和 \varphi=(k-2)\pi+S ,其中S为k边形的面积。

证明过程

像吹气球一样的方法,将多面体吹成每条边都铺在半径为1的单位球面上,就像足球上的花纹一样。设点数为n,面数为r,线数为m。

每个点周围角的和为 2\pi (包括平角、优角和周角),则所有角的和为 2n\pi

对于每个多边形,设其边数为 m_{i} ,面积为 S_{i} ,则其内角和为 m_{i}\pi-2\pi+S_{i} 。所有多边形内角和等于所有角的和 \sum_{i=1}^{r}{(m_{i}\pi-2\pi+S_{i})} ,由于每条边被两个多边形共用(或被一个多边形使用两次),所以:

\sum_{i=1}^{r}{(m_{i}\pi-2\pi+S_{i})}=2m\pi-2r\pi+4\pi

联立得: 2m\pi-2r\pi+4\pi=2n\pi

n+r-m=2

后记

这是课本上的方法,证明过程比其它方法简短得多,但我在网络上没找到,所以写在这里和大家分享。球面几何和正常的几何有些差别,看着还是很有意思的。它也可以为之后学习黎曼几何、喷咖喱模型、客来阴模型做准备。

对于凹多面体是否能铺在球面上,以及空心体、复杂多面体等情况,在这不做介绍。

参考资料

人教版 高中数学选修 球面上的几何

相关推荐
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【中级课程】</strong></span>,中级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页