前言
之前给朋友们分享过用大模型+本地资料构建个人知识库问答助手。
最近发现一个开源项目,可以用大模型轻松地对本地资料构建知识图谱。
可视化的方式,清晰展示了资料中的核心概念,以及概念之间的关系。
知识图谱算是一种降维分析,把一堆文本内容凝聚在一张关系图中,能让你对整个资料有全局把握。了解某个概念(节点)对整个资料的重要性,理解看似不相关的概念之间的联系。
最牛逼的是可以实现图检索增强(GRAG),通过知识图谱改进检索,从而让知识库助手回答得更准。
微软最近爆火的开源项目 GraphRAG 就是这么回事。
用大模型构建知识图谱总共分三步,
-
将资料分成多个块
-
对于每个文本块,使用 LLM 提取概念及其语义关系
-
将概念及关系转换图形模式
然后,再看看每一步的核心代码。
资料分块用的是 LangChain,对目录下不同格式、多个文件进行分割,转成 DataFrame 格式数据。
用封装好的 df2Graph 类,调用大模型,将 DataFrame 中的文本片段转成图结构的数据。
参数 model 是使用的大模型名称,这里需要填本地 Ollama 中已经安装的模型。
我们之前介绍过 Ollama ,可以直接在自己电脑上运行大模型,这样构建知识图谱不会产生额外费用。
如果你仍想用 GPT 也可以修改对应的源码。
开源地址:https://github.com/rahulnyk/knowledge_graph
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
