用Ollama+RAGflow打造私有知识库,全程干货,零基础小白也能轻松掌握!

1. Ollama 简介 https://ollama.com

Ollama 是一个本地运行的大语言模型(LLM)工具平台,允许用户在本地设备上运行和管理大模型,而无需依赖云服务。它支持多种开源模型,并提供了用户友好的接口,非常适合开发者和企业使用。

安装 Ollama

首先,从 Ollama 官网 下载安装包,并按照提示完成安装。

启动Ollama

Windows下搜索ollama,然后点击启动

Ollama 命令介绍

Ollama 提供了几个简单易用的命令,基本功能如下:

Usage:  
  ollama [flags]  
  ollama [command]  
  
Available Commands:  
  serve       启动 Ollama 服务  
  create      从 Modelfile 创建一个模型  
  show        查看模型详细信息  
  run         运行一个模型  
  stop        停止正在运行的模型  
  pull        从注册表拉取一个模型  
  push        将一个模型推送到注册表  
  list        列出所有可用的模型  
  ps          列出当前正在运行的模型  
cp          复制一个模型  
rm          删除一个模型  
help        获取关于任何命令的帮助信息  
  
Flags:  
  -h, --help      helpfor ollama  
  -v, --version   Show version information  

拉取模型并运行

ollama pull 具体的模型,这里以deepseek为例

1. 选择模型

2. 搜索你想要的模型:比如 deepseek,qwen

3. 选择你的模型

1. 选择模型大小

2. 复制下载指令,替换为下面,并在终端中执行

ollama pull  deepseek-r1:14b  

运行模型并对话,–verbose参数可以显示token信息

ollama run deepseek-r1:14b --verbose

信息如下:

资源占用情况:

退出对话

/bye

运行ollama远程服务

ENV OLLAMA_HOST=0.0.0.0:11434 ollama serve

2 RAGFlowj简介 https://ragflow.io

RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。它主要适用于需要动态生成内容且依赖外部知识库的场景,例如智能客服、文档生成、数据分析等。

RAGFlow的安装和部署

📝前置条件

  • CPU ≥ 4 cores (x86);

  • RAM ≥ 16 GB;

  • Disk ≥ 50 GB;

  • Docker ≥ 24.0.0 & Docker Compose ≥ v2.26.1.

    如果你并没有在本机安装 Docker(Windows、Mac,或者 Linux), 可以参考文档 Install Docker Engine 自行安装。

🚀 启动服务器

  1. 确保 vm.max_map_count 不小于 262144:

    如需确认 vm.max_map_count 的大小:

    $ sysctl vm.max_map_count  
    
    

    如果 vm.max_map_count 的值小于 262144,可以进行重置:

    # 这里我们设为 262144:  
    $ sudo sysctl -w vm.max_map_count=262144  
    
    

    你的改动会在下次系统重启时被重置。如果希望做永久改动,还需要在 /etc/sysctl.conf 文件里把 vm.max_map_count 的值再相应更新一遍:

    vm.max_map_count=262144  
    
    
  2. 克隆仓库:

    $ git clone https://github.com/infiniflow/ragflow.git  
    
    
  3. 进入 docker 文件夹,利用提前编译好的 Docker 镜像启动服务器:

请在运行 docker compose 启动服务之前先更新 docker/.env 文件内的 RAGFLOW_IMAGE 变量。比如,你可以通过设置 RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0 来下载 RAGFlow 镜像的 v0.16.0 完整发行版。

镜像比较大,需要留足磁盘空间,另外docker下载需要自备科学上网方式,否则有些镜像拉取不下来

$ cd ragflow  
$ docker compose -f docker/docker-compose-CN.yml up -d  

服务器启动成功后再次确认服务器状态:

$ docker logs -f ragflow-server  

出现以下界面提示说明服务器启动成功:

     ____   ___    ______ ______ __  
    / __ \ /   |  / ____// ____// /____  _      __  
   / /_/ // /| | / / __ / /_   / // __ \| | /| / /  
  / _, _// ___ |/ /_/ // __/  / // /_/ /| |/ |/ /  
 /_/ |_|/_/  |_|\____//_/    /_/ \____/ |__/|__/  
  
 * Running on all addresses (0.0.0.0)  
 * Running on http://127.0.0.1:9380  
 * Running on http://x.x.x.x:9380  
 INFO:werkzeug:Press CTRL+C to quit

如果您跳过这一步系统确认步骤就登录 RAGFlow,你的浏览器有可能会提示 network anormal网络异常,因为 RAGFlow 可能并未完全启动成功。

  1. 在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。

    上面这个例子中,您只需输入 http://IP_OF_YOUR_MACHINE 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80)。

注册登录

在上图的界面中注册,然后登录就来到下面这个页面了

配置 Ollama 连接大模型

  1. 如下图我们先配置模型,点击右上角头像,再点击模型提供商

  2. 接着我们在 RagFlow 中配置模型,注意由于 RagFlow 是在 docker 中安装的,所以请求本地部署的 Ollama 地址要用 :host.docker.internal:11434,如果docker在局域网其他服务器上,则直接填写局域网http://局域网ip:11434

1. 选择模型提供商

2. 选择ollama

通过命令获取ollama模型列表

ollama list

最终信息填写如下:

创建知识库

接下来我们就可以创建知识库了

1. 选择知识库

2. 创建知识库

输入知识库名字

配置知识库属性

1 选择文档语言

2 如果下载是全量的RAGFlow镜像,会带有嵌入模型,可以按图中选择;另外也可以添加自定的嵌入模型,方法同前面的模型提供商设置

其他的选项,根据你的情况自行设置就好,很简单

添加私有文档

1. 选择数据集

2. 点击新建文件

3. 上传本地文档

解析文档

看下下面状态,说明文档解析完成


开启聊天

接着就到了展示成果的时候了,我们可以根据自己的知识库与模型进行自然语言交互了。

1. 选择聊天

2. 创建聊天助理

3. 填写助理名字:比如 张三

4. 选择刚才创建的知识库

配置聊天模型,如下:

首先注意,在聊天配置中要把 token 设置大一些,不然回复的内容会很少!我这里把它拉到最大值了。

新建一个对话

数据验证

上面上传的文档是PDD的财务报表,截图中可以看到聊天内容召回了文档中的内容。

Agent功能

RAGFlow也支持agent功能,后面再进行探索

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### 关于Ollama的技术文档、知识库及相关资料 #### Ollama概述及其应用场景 Ollama是一个专注于本地化部署的知识库解决方案,适用于希望保持数据隐私的企业和个人用户。其特点在于可以离线访问并利用大型语言模型提供智能化服务[^1]。 #### 技术实现细节 为了创建基于Ollama的高效能知识库系统,通常会集成其他先进技术来增强功能。例如,在构建过程中可能会采用LangChain框架用于链式逻辑处理;ChromaDB作为向量数据库存储索引;而当涉及到更复杂的自然语言理解和推理任务时,则可能引入像DeepSeek这样的高级认知大模型[^2]。 对于那些希望通过图形界面操作Ollama系统的开发者来说,存在多个选项可供选择。其中一种流行的方法是使用名为MaxKB的应用程序,它不仅提供了友好的前端交互体验,还允许使用者轻松地将自己的训练成果融入到项目当中,从而形成个性化的问答平台[^3]。 ```python # 示例代码展示如何初始化一个简单的Ollama实例(假设API已准备好) import ollama_api def init_ollama(): client = ollama_api.Client() response = client.initialize() # 初始化设置 return response.status_code == 200 # 返回状态码判断是否成功启动 if __name__ == "__main__": success = init_ollama() print(f'Ollama initialized successfully? {success}') ``` #### 实际案例分析 考虑到实际需求的不同,某些情况下还需要考虑额外的功能扩展。比如针对大量非结构化数据的有效管理和快速检索问题,可以通过加入OCR光学字符识别技术和GPU硬件加速等方式提高整体性能表现,确保即使面对复杂多样的输入也能迅速给出精准的回答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值