【优化1】线性优化

概览

线性优化,指的是目标函数和约束条件都是线性的优化问题。

面对一个优化问题,首先需要建立优化问题的模型,因此需要编程语言;对优化问题建模后需要求解该问题,因此需要求解不同优化问题的solver。

本系列使用的编程语言以及solver如下:

  • 编程语言Julia:是一个由MIT学生开发的高性能动态编程语言,有很多包可以添加来扩充其功能。
  • 优化库JuMP:是Julia的一个包,用于建立优化问题。
  • solver:Jump支持很多开源与商业的solver,这些solver用于求解优化问题。常用的solver有COIN Clp, COIN Cbc, Gurobi等。

本系列大部分内容参考了下面课程,予以感谢:MITx: 15.053x Optimization Methods in Business Analytics。

线性化的必要性

求解线性问题要比求解非线性问题容易很多,因此将非线性的目标函数或者约束跳进进行线性化,有利于求解优化问题。
本文将介绍三种常见的非线性约束并探讨如何将其线性化。

非线性条件线性化

绝对值约束

绝对值约束将绝对值拆开即可。

|x1+x2x3x4|5{x1+x2x3x45x1+x2x3x45

最大最小约束

最大最小约束(或最小最大约束),可以将优化目标用一个自变量代替,然后补充满足条件的自变量的约束条件即可。

maxmin{50x1,25x2,20x3,15x4}maxzz50x1z25x2z20x3z15x4

比例约束

对于比例约束,只需要将两边同乘以分母即可,有以下两点需要注意:

  • 分母如果是负数,必须得变化符号。
  • 分母如果是0,那么新的约束同样满足条件,所以0的情况不用考虑。

x1(x1+x2+x3+x4).2{.8x1.2x2.2x3.2x40

总结

大部分情况下,非线性的目标函数或者约束都不可以直接转化成线性,只有下面三种除外:

  • 绝对值约束
  • 最大最小约束
  • 比例约束

Julia优化例子

Knapsack

using JuMP, DataFrames
# Define model
m = Model()
# Define capacity
capacity = 11
# Read data from CSV file using readtable
data = readtable("knapsack_data.csv", header = false)
# Weights from first column, weights = [1 2 15 6 28]
weights = data[:,1]
# Values from second column, values = [1 6 18 22 7]
values = data[:,2]
# Assign binary values to items
@variable(m, x[1:5], Bin)
# Constraint on total weight
@constraint(m, sum{weights[i]*x[i], i in 1:5} <= capacity) 
# Maximize value from items
@objective(m, Max, sum{values[i]*x[i], i in 1:5})
# Solve model
solve(m)
# Determine which items to carry 
println("Variable Values: ", getvalue(x))
# Determine value from items carried
println("Objetive value: ", getobjectivevalue(m))

Diet

using JuMP
#Define model 
m = Model()
#Food available
S = ["brownies","ice cream","cola","cheese cake"]
#Non-negativity
@defVar(m, x[S] >= 0)
#Minimum calories
@addConstraint(m, 400x["brownies"] + 200x["ice cream"] + 150x["cola"] + 500x["cheese cake"] >= 500)
#At least 6 grams of chocolate
@addConstraint(m, 3x["brownies"] + 2x["ice cream"] >= 6)
#At least 10 grams of sugar
@addConstraint(m, 2x["brownies"] + 2x["ice cream"] + 4x["cola"] + 4x["cheese cake"] >= 10)
#At least 8 grams of fat
@addConstraint(m, 2x["brownies"] + 4x["ice cream"] + 1x["cola"] + 5x["cheese cake"] >= 8)
#Minimize cost of consumption
@setObjective(m, Min, 0.5x["brownies"] + 0.2x["ice cream"] + 0.3x["cola"] + 0.8x["cheese cake"])
#Solve the optimization problem
solve(m)
#Determine consumption amounts
println("variable values: ", getValue(x))
#Determine optimal cost of consumption
println("Objetive value: ", getObjectiveValue(m))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值