HUSTOJ 基础题组1 问题 W: Tiling_easy version

文章介绍了如何通过C++编程实现动态规划算法来计算一个2行N列的网格用2x1和2x2两种骨牌进行铺设的方法数量。使用递推公式f(n)=f(n-1)+2*f(n-2)来计算每组数据的铺设方法总数。
摘要由CSDN通过智能技术生成
题目描述

有一个大小是 2 x n 的网格,现在需要用2种规格的骨牌铺满,骨牌规格分别是 2 x 1 和 2 x 2,请计算一共有多少种铺设的方法。

输入

输入的第一行包含一个正整数T(T<=20),表示一共有 T组数据,接着是T行数据,每行包含一个正整数N(N<=30),表示网格的大小是2行N列。

输出

输出一共有多少种铺设的方法,每组数据的输出占一行。

样例输入 Copy
3
2
8
12
样例输出 Copy
3
171
2731
/*
f(n) = f(n-1) + 2*f(n-2)
*/
#include<iostream>
using namespace std;
int main()
{
    long long result[31] = { 0,1,3 };
    for (int i = 3; i <= 30; i++) {
        result[i] = result[i - 1] + 2 * result[i - 2];
    }
    int C;
    cin >> C;
    while (C--) {
        int n;
        cin >> n;
        cout << result[n] << endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值