iOS M1电脑上 Pods 第三方后运行模拟器报错 ‘xx.h’ file not found

在podfile中添加钩子

post_install do |installer|
  installer.pods_project.targets.each do |target|
    target.build_configurations.each do |config|
      config.build_settings['ONLY_ACTIVE_ARCH'] = 'NO'
    end
  end
end

执行 pod install 即可。

参考链接:M1芯片Mac搭建ios开发环境踩坑 - Mirari's Blog ,参考了方案2解决了问题,方案1没有效果。

### RAG技术的工作原理 RAG(Retrieval-Augmented Generation)是一种结合检索和生成的技术框架,旨在提升自然语言处理任务中的性能。其核心思想是通过引入外部知识源,在生成过程中增强模型的表现力[^1]。 #### 背景概念 RAG核心在于将传统的纯生成模式转变为一种混合模式——即先从外部知识库中检索相关信息,再基于这些信息生成最终的结果。这种方法能够有效缓解传统生成模型可能存在的幻觉问题(hallucination),并提高生成内容的相关性和准确性[^2]。 #### 实现步骤详解 以下是RAG技术的主要实现过程: 1. **调用大语言模型** 使用预训练的大规模语言模型(如ChatGPT、GLM等)作为基础架构,负责后续的文本生成任务。这一阶段通常依赖于强大的上下文理解能力以及高效的参数化结构。 2. **读取知识库数据** 构建或接入一个大规模的知识库,该知识库可以是以文档形式存储的数据集或者经过加工后的语料集合。此部分决定了可被检索的信息范围及其质量[^3]。 3. **文本索引答案检索** 对知识库内的文本进行预处理,并建立高效查询机制以便快速定位相关内容片段。常见的方法包括倒排索引等技术手段。 4. **文本嵌入向量检索** 将输入问题转化为高维空间中的表示向量,并计算它其他已知样本之间的相似度得分;随后依据得分选取最接近的一组候选对象作为潜在匹配项。 5. **文本多路召回重排序** 经过多轮筛选后得到多个备选方案,进一步采用机器学习算法对其进行综合评估打分,最终选出最优解路径。 6. **文本问答Prompt优化** 针对具体应用场景设计合理的提示模板(Prompt Engineering),引导LLMs按照预期方向完成指定操作,比如精确回答特定领域的问题等等。 ```python import numpy as np def rag_pipeline(question, knowledge_base): """ A simplified example of the RAG pipeline. Args: question (str): The input query from user. knowledge_base (list): List of documents or passages to search through. Returns: str: Generated answer based on retrieved information. """ # Step 1: Embedding and Retrieval embeddings = generate_embeddings([question] + knowledge_base) scores = compute_similarity(embeddings[0], embeddings[1:]) top_k_indices = np.argsort(scores)[-3:] # Top-3 relevant docs # Step 2: Generate Answer with Retrieved Contexts context = "\n".join([knowledge_base[i] for i in top_k_indices]) prompt = f"Question: {question}\nContext:\n{context}" generated_answer = call_large_language_model(prompt) return generated_answer def generate_embeddings(texts): pass # Placeholder function; implement embedding generation here. def compute_similarity(query_embedding, doc_embeddings): pass # Placeholder function; calculate cosine similarity between vectors. def call_large_language_model(prompt): pass # Placeholder function; invoke LLM API using provided prompts. ``` 上述代码展示了简化版的RAG流水线逻辑,实际应用中还需要考虑更多细节和技术挑战。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值